
Laura Cipolla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8463568/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Galactose Tethered Decellularized Liver Matrix: Toward a Biomimetic and Biofunctional Matrix for Liver Tissue Engineering. ACS Applied Bio Materials, 2022, 5, 3023-3037.	2.3	0
2	Differential glycosylation of collagen modulates lung cancer stem cell subsets through β1 integrinâ€mediated interactions. Cancer Science, 2021, 112, 217-230.	1.7	23
3	Binary Biocompatible CNC–Gelatine Hydrogel as 3D Scaffolds Suitable for Cell Culture Adhesion and Growth. Applied Nano, 2021, 2, 118-127.	0.9	3
4	Photoinduced Porcine Gelatin Cross-Linking by Homobi- and Homotrifunctional Tetrazoles. Gels, 2021, 7, 124.	2.1	6
5	Thymosinâ€Î²4, and Human Vitronectin peptides Grafted to Collagen Tune Adhesion or VEGF Gene Expression in Human Cell Lines**. ChemistrySelect, 2021, 6, 10160-10164.	0.7	0
6	Squarate Cross-Linked Gelatin Hydrogels as Three-Dimensional Scaffolds for Biomedical Applications. Langmuir, 2021, 37, 14050-14058.	1.6	3
7	Synthesis, Molecular Modeling and Biological Evaluation of Metabolically Stable Analogues of the Endogenous Fatty Acid Amide Palmitoylethanolamide. International Journal of Molecular Sciences, 2020, 21, 9074.	1.8	1
8	Histological validation of adipogenic differentiation potential of ASC on collagen-based 2D scaffolds. Histochemistry and Cell Biology, 2020, 154, 449-455.	0.8	2
9	Gelatin-Based Hydrogels for the Controlled Release of 5,6-Dihydroxyindole-2-Carboxylic Acid, a Melanin-Related Metabolite with Potent Antioxidant Activity. Antioxidants, 2020, 9, 245.	2.2	10
10	Neoglycosylated Collagen: Effect on Neuroblastoma F-11 Cell Lines. Molecules, 2020, 25, 4361.	1.7	2
11	Gelatin-Based Hydrogels through Homobifunctional Triazolinediones Targeting Tyrosine Residues. Molecules, 2019, 24, 589.	1.7	15
12	Glycan Carriers As Glycotools for Medicinal Chemistry Applications. Current Medicinal Chemistry, 2019, 26, 6349-6398.	1.2	5
13	Maltose conjugation to PCL: Advanced structural characterization and preliminary biological properties. Journal of Molecular Structure, 2018, 1159, 74-78.	1.8	7
14	Towards hydrophobic carminic acid derivatives and their incorporation in polyacrylates. Royal Society Open Science, 2018, 5, 172399.	1.1	3
15	Bouncing and 3D printable hybrids with self-healing properties. Materials Horizons, 2018, 5, 849-860.	6.4	44
16	Convergent dendrimer synthesis by olefin metathesis and studies toward glycoconjugation. Canadian Journal of Chemistry, 2017, 95, 1008-1012.	0.6	4
17	Clyco-Functionalysed Biomaterials in Neuroregeneration. , 2017, , 179-198.		2
18	Bioresponsive Hydrogels: Chemical Strategies and Perspectives in Tissue Engineering. Gels, 2016, 2, 28.	2.1	30

#	Article	IF	CITATIONS
19	Multivalent ligand mimetics of LecA from P. aeruginosa: synthesis and NMR studies. Carbohydrate Research, 2016, 429, 23-28.	1.1	4
20	Synthetic sulfoglycolipids targeting the serine–threonine protein kinase Akt. Bioorganic and Medicinal Chemistry, 2016, 24, 3396-3405.	1.4	9
21	Glycomics: New Challenges and Opportunities in Regenerative Medicine. Chemistry - A European Journal, 2016, 22, 13380-13388.	1.7	39
22	The collaggrecan: Synthesis and visualization of an artificial proteoglycan. International Journal of Biological Macromolecules, 2016, 86, 65-70.	3.6	10
23	Big Atoms for Small Children: Building Atomic Models from Common Materials To Better Visualize and Conceptualize Atomic Structure. Journal of Chemical Education, 2016, 93, 1068-1072.	1.1	Ο
24	Gelatin hydrogels via thiol-ene chemistry. Monatshefte Für Chemie, 2016, 147, 587-592.	0.9	24
25	Different Sialoside Epitopes on Collagen Film Surfaces Direct Mesenchymal Stem Cell Fate. ACS Applied Materials & Interfaces, 2016, 8, 14952-14957.	4.0	23
26	VAâ€086 methacrylate gelatine photopolymerizable hydrogels: A parametric study for highly biocompatible 3 <scp>D</scp> cell embedding. Journal of Biomedical Materials Research - Part A, 2015, 103, 2109-2117.	2.1	94
27	Carbohydrate, Biomaterials, and Tissue Engineering Applications. , 2015, , 395-418.		0
28	New synthesis and biological evaluation of uniflorine A derivatives: towards specific insect trehalase inhibitors. Organic and Biomolecular Chemistry, 2015, 13, 886-892.	1.5	16
29	Galactose grafting on poly(ε-caprolactone) substrates for tissue engineering: a preliminary study. Carbohydrate Research, 2015, 405, 39-46.	1.1	24
30	Bifunctional dendrons for multiple carbohydrate presentation via carbonyl chemistry. Beilstein Journal of Organic Chemistry, 2014, 10, 1686-1691.	1.3	5
31	Arabinose 5-phosphate isomerase as a target for antibacterial design: Studies with substrate analogues and inhibitors. Bioorganic and Medicinal Chemistry, 2014, 22, 2576-2583.	1.4	10
32	Exploring GPTMS reactivity against simple nucleophiles: chemistry beyond hybrid materials fabrication. RSC Advances, 2014, 4, 1841-1848.	1.7	46
33	Synthesis and biological evaluation of arabinose 5-phosphate mimics modified at position five. Carbohydrate Research, 2014, 389, 186-191.	1.1	1
34	Response of osteoblast-like MG63 on neoglycosylated collagen matrices. MedChemComm, 2014, 5, 1208-1212.	3.5	8
35	Bioactivity of surface tethered Osteogenic Growth Peptide motifs. MedChemComm, 2014, 5, 899.	3.5	13
36	Thiol–ene Mediated Neoglycosylation of Collagen Patches: A Preliminary Study. Langmuir, 2014, 30, 1336-1342.	1.6	44

#	Article	IF	CITATIONS
37	Neoglucosylated Collagen Matrices Drive Neuronal Cells to Differentiate. ACS Chemical Neuroscience, 2014, 5, 261-265.	1.7	40
38	Carbonate hydroxyapatite functionalization: a comparative study towards (bio)molecules fixation. Interface Focus, 2014, 4, 20130040.	1.5	53
39	N-Bridged 1-deoxynojirimycin dimers as selective insect trehalase inhibitors. Carbohydrate Research, 2014, 389, 46-49.	1.1	9
40	Dendron Synthesis and Carbohydrate Immobilization on a Biomaterial Surface by a Double-Click Reaction. Organic Letters, 2014, 16, 1298-1301.	2.4	25
41	Carbohydrate-functionalized collagen matrices: design and characterization of a novel neoglycosylated biomaterial. Carbohydrate Research, 2014, 389, 12-17.	1.1	25
42	Glucosamine grafting on poly(ε-caprolactone): a novel glycated polyester as a substrate for tissue engineering. RSC Advances, 2013, 3, 6286.	1.7	25
43	Epoxide Opening versus Silica Condensation during Sol–Gel Hybrid Biomaterial Synthesis. Chemistry - A European Journal, 2013, 19, 7856-7864.	1.7	59
44	Phosphonate Analogues of Arabinose 5â€Phosphate: Putative Ligands for Arabinose 5â€Phosphate Isomerases. European Journal of Organic Chemistry, 2013, 2013, 7776-7784.	1.2	4
45	Recent Approaches to Novel Antibacterials Designed After LPS Structure and Biochemistry. Current Drug Targets, 2012, 13, 1458-1471.	1.0	13
46	Smart biomaterials: the contribution of glycoscience. Carbohydrate Chemistry, 2012, , 416-445.	0.3	1
47	Synthesis and biological evaluation of nojirimycin- and pyrrolidine-based trehalase inhibitors. Beilstein Journal of Organic Chemistry, 2012, 8, 514-521.	1.3	22
48	Sugar-Based Enantiomeric and Conformationally Constrained Pyrrolo[2,1- <i>c</i>][1,4]-Benzodiazepines as Potential GABA _A Ligands. Journal of Medicinal Chemistry, 2011, 54, 1266-1275.	2.9	29
49	Ultrasonic assisted Fischer glycosylation: generating diversity for glycochemistry. Molecular Diversity, 2011, 15, 341-345.	2.1	9
50	Sugar-decorated hydroxyapatite: an inorganic material bioactivated with carbohydrates. Carbohydrate Research, 2011, 346, 1564-1568.	1.1	15
51	Diazo transfer for azido-functional surfaces. Materials Today, 2011, 14, 164-169.	8.3	17
52	Fructoseâ€Based Proline Analogues: Exploring the Prolyl <i>trans</i> / <i>cis</i> â€Amide Rotamer Population in Model Peptides. European Journal of Organic Chemistry, 2011, 2011, 128-136.	1.2	8
53	Synthesis of Novel Iminosugarâ€Based Trehalase Inhibitors by Crossâ€Metathesis Reactions. European Journal of Organic Chemistry, 2011, 2011, 3995-4000.	1.2	12
54	Glycans in Magnetic Resonance Imaging: Determinants of Relaxivity to Smart Agents, and Potential Applications in Biomedicine. Current Medicinal Chemistry, 2011, 18, 1002-1018.	1.2	21

#	Article	IF	CITATIONS
55	Chapter 10. Trehalose mimetics as inhibitors of trehalose processing enzymes. Carbohydrate Chemistry, 2011, , 259-302.	0.3	3
56	Discovery and design of carbohydrate-based therapeutics. Expert Opinion on Drug Discovery, 2010, 5, 721-737.	2.5	57
57	Targeting Bacterial Membranes: NMR Spectroscopy Characterization of Substrate Recognition and Binding Requirements of <scp>D</scp> â€Arabinoseâ€5â€Phosphate Isomerase. Chemistry - A European Journal, 2010, 16, 1897-1902.	1.7	27
58	Kdo: a critical monosaccharide for bacteria viability. Natural Product Reports, 2010, 27, 1618.	5.2	60
59	Carbohydrate mimetics and scaffolds: sweet spots in medicinal chemistry. Future Medicinal Chemistry, 2010, 2, 587-599.	1.1	38
60	Pyrrolo[2,1-c][1,4]benzodiazepine as a Scaffold for the Design and Synthesis of Anti- Tumour Drugs. Anti-Cancer Agents in Medicinal Chemistry, 2009, 9, 1-31.	0.9	73
61	The Kdo Biosynthetic Pathway Toward OM Biogenesis as Target in Antibacterial Drug Design and Development. Current Drug Discovery Technologies, 2009, 6, 19-33.	0.6	24
62	Synthesis and Biological Evaluation of Novel Rigid 1,4â€Benzodiazepineâ€2,5â€dione Chimeric Scaffolds. European Journal of Organic Chemistry, 2008, 2008, 635-639.	1.2	18
63	Fructose-fused Î ³ -butyrolactones and lactams, synthesis and biological evaluation as GABA receptor ligands. Carbohydrate Research, 2008, 343, 1840-1848.	1.1	21
64	Glycoconjugates in Cancer Therapy. Anti-Cancer Agents in Medicinal Chemistry, 2008, 8, 92-121.	0.9	46
65	Editorial [Hot Topic: Role of Carbohydrates in Tumour Progression, Metastasis and Anti-Tumour Drug Development (Guest Editor: Prof. Laura Cipolla)]. Anti-Cancer Agents in Medicinal Chemistry, 2008, 8, 1-1.	0.9	0
66	Re LPS Biogenetic Pathway: Enzyme Characterisation and Synthetic Efforts Towards Inhibitors. Current Organic Chemistry, 2008, 12, 576-600.	0.9	3
67	Chemoselective Neoglycosylation. Advances in Carbohydrate Chemistry and Biochemistry, 2007, 61, 353-398.	0.4	35
68	Synthesis and biological evaluation of a small library of nojirimycin-derived bicyclic iminosugars. Carbohydrate Research, 2007, 342, 1813-1830.	1.1	32
69	Combinatorial Approaches to Iminosugars as Glycosidase and Glycosyltransferase Inhibitors. Combinatorial Chemistry and High Throughput Screening, 2006, 9, 571-582.	0.6	22
70	Synthesis of a Spiro D-Proline Analogue Bearing D-Fructose. Letters in Drug Design and Discovery, 2005, 2, 291-293.	0.4	8
71	Combinatorial Libraries of Biocatalysts: Application and Screening. Combinatorial Chemistry and High Throughput Screening, 2004, 7, 101-114.	0.6	14
72	Glycoconjugate and Oligosaccharide Mimetics by Chemoselective Ligation. ChemInform, 2004, 35, no.	0.1	0

#	Article	IF	CITATIONS
73	General Methods for Iminosugar Synthesis. ChemInform, 2003, 34, no.	0.1	Ο
74	Glycoconjugate and oligosaccharide mimetics by chemoselective ligation. Comptes Rendus Chimie, 2003, 6, 635-644.	0.2	11
75	General Methods for Iminosugar Synthesis. Current Topics in Medicinal Chemistry, 2003, 3, 485-511.	1.0	72
76	Synthesis of nojirimycin C-glycosides. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 2161-2165.	1.3	25
77	Synthesis and Conformational Analysis of Fructose-Derived Scaffolds: Molecular Diversity from a Single Molecule. Chemistry - A European Journal, 2002, 8, 3976-3983.	1.7	23
78	Carbohydrate-Based Scaffolds for the Generation of Sortiments of Bioactive Compounds. Monatshefte Für Chemie, 2002, 133, 369-382.	0.9	33
79	Novel Tn antigen-containing neoglycopeptides: synthesis and evaluation as anti tumor vaccines. Bioorganic and Medicinal Chemistry, 2002, 10, 1639-1646.	1.4	59
80	Carbohydrate-Based Scaffolds for the Generation of Sortiments of Bioactive Compounds. , 2002, , 19-32.		0
81	Synthesis and Biological Evaluation of an Anticancer Vaccine Containing the C-Glycoside Analogue of the Tn Epitope. Bioconjugate Chemistry, 2001, 12, 325-328.	1.8	36
82	Tin-mediated regioselective acylation of unprotected sugars on solid phase. Tetrahedron Letters, 2000, 41, 8587-8590.	0.7	24
83	Stereoselective synthesis of α-C-glycosides of N-acetylgalactosamine. Tetrahedron: Asymmetry, 2000, 11, 295-303.	1.8	27
84	Epitope affinity for MHC class I determines helper requirement for CTL priming. Nature Immunology, 2000, 1, 145-150.	7.0	76
85	A new procedure for the synthesis of C-glycosides of nojirimycin. Chemical Communications, 2000, , 1289-1290.	2.2	33
86	A highly convergent approach to O- and N-linked glycopeptide analogues. Glycoconjugate Journal, 1999, 16, 399-404.	1.4	13
87	Synthesis of potential inhibitors of carbohydrate processing enzymes. Carbohydrate Polymers, 1998, 37, 291-298.	5.1	7
88	C-Glucosyl quinones and related spacer-connected C-disaccharide. Chemical Communications, 1997, , 1617-1618.	2.2	6
89	New and Easy Access to C-Glycosides of Glucosamine and Mannosamine. Journal of Organic Chemistry, 1997, 62, 6678-6681.	1.7	85
90	Synthesis of Stable Analogues of Glyceroglycolipids. Tetrahedron, 1997, 53, 6163-6170.	1.0	18

#	Article	IF	CITATIONS
91	Glycomimetics via a new glycoexoenitols–malonyl radical C–C bond formation. Chemical Communications, 1996, , 1253-1254.	2.2	22
92	Synthesis of azasugars by Grignard reaction on glycosylamines. Tetrahedron, 1995, 51, 4679-4690.	1.0	62