
Karen Shapiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8463361/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamics and epidemiology of <i>Toxoplasma gondii</i> oocyst shedding in domestic and wild felids. Transboundary and Emerging Diseases, 2022, 69, 2412-2423.	3.0	18
2	Wastewater analysis can be a powerful public health tool—if it's done sensibly. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	58
3	The prevalence of <i>Cyclospora cayetanensis</i> in water: a systematic review and meta-analysis. Epidemiology and Infection, 2022, 150, .	2.1	7
4	The challenge of SARS-CoV-2 environmental monitoring in schools using floors and portable HEPA filtration units: Fresh or relic RNA?. PLoS ONE, 2022, 17, e0267212.	2.5	11
5	Association of zoonotic protozoan parasites with microplastics in seawater and implications for human and wildlife health. Scientific Reports, 2022, 12, 6532.	3.3	25
6	Sarcocystis neurona Transmission from Opossums to Marine Mammals in the Pacific Northwest. EcoHealth, 2021, 18, 84-94.	2.0	5
7	Clams and potential foodborne <i>Toxoplasma gondii</i> in Nunavut, Canada. Zoonoses and Public Health, 2021, 68, 277-283.	2.2	9
8	A metabarcoding approach for detecting protozoan pathogens in wild oysters from Prince Edward Island, Canada. International Journal of Food Microbiology, 2021, 360, 109315.	4.7	1
9	Quantification of viable protozoan parasites on leafy greens using molecular methods. Food Microbiology, 2021, 99, 103816.	4.2	11
10	INVESTIGATION OF SARCOCYSTIS SPP. INFECTION IN FREE-RANGING AMERICAN BLACK BEARS (URSUS) Tj ETQ Wildlife Diseases, 2021, 57, 856-864.	0 0 0 rg8 0.8	[/Overlock 1(0
11	Detection of Protozoan Parasites on Leafy Greens Using Multiplex PCR. , 2021, , 163-176.		0
12	Detection of Toxoplasma Gondii and Cyclospora Cayetanensis in Oysters. , 2021, , 225-239.		0
13	Seasonal and spatial variation in <i>Toxoplasma gondii</i> contamination in soil in urban public spaces in California, United States. Zoonoses and Public Health, 2020, 67, 70-78.	2.2	20
14	Application of next generation sequencing for detection of protozoan pathogens in shellfish. Food and Waterborne Parasitology, 2020, 21, e00096.	2.7	16
15	<i>Cryptosporidium</i> and <i>Giardia</i> in locally harvested clams in Iqaluit, Nunavut. Zoonoses and Public Health, 2020, 67, 352-361.	2.2	13
16	Type X strains of <i>Toxoplasma gondii</i> are virulent for southern sea otters (<i>Enhydra lutris) Tj ETQq0 0 0 Biological Sciences, 2019, 286, 20191334.</i>	rgBT /Ove 2.6	rlock 10 Tf 50 30
17	Prevalence and genetic characterization of <i>Giardia</i> spp. and <i>Cryptosporidium</i> spp. in dogs in Iqaluit, Nunavut, Canada. Zoonoses and Public Health, 2019, 66, 813-825.	2.2	10
18	Simultaneous detection of four protozoan parasites on leafy greens using a novel multiplex PCR	4.2	24

Simultaneous detection of four protozoan par assay. Food Microbiology, 2019, 84, 103252.

KAREN SHAPIRO

#	Article	IF	CITATIONS
19	Comparison of PCR assays to detect Toxoplasma gondii oocysts in green-lipped mussels (Perna) Tj ETQq1 1 0.78	4314 rgBT 1.6	/Qyerlock 1
20	Structure, composition, and roles of the Toxoplasma gondii oocyst and sporocyst walls. Cell Surface, 2019, 5, 100016.	3.0	30
21	Environmental transmission of Toxoplasma gondii: Oocysts in water, soil and food. Food and Waterborne Parasitology, 2019, 15, e00049.	2.7	174
22	Comparison of freeze-thaw cycles for nucleic acid extraction and molecular detection of Cryptosporidium parvum and Toxoplasma gondii oocysts in environmental matrices. Journal of Microbiological Methods, 2019, 156, 1-4.	1.6	19
23	First report of Toxoplasma gondii sporulated oocysts and Giardia duodenalis in commercial green-lipped mussels (Perna canaliculus) in New Zealand. Parasitology Research, 2018, 117, 1453-1463.	1.6	37
24	Effects of salinity and transparent exopolymer particles on formation of aquatic aggregates and their association with norovirus. Science of the Total Environment, 2018, 643, 1514-1521.	8.0	3
25	Fecal indicator bacteria and zoonotic pathogens in marine snow and California mussels (Mytilus) Tj ETQq1 1 0.7	84314 rgB ⁻ 2.7	T /Overlock
26	Concentration and retention of <i>Toxoplasma gondii</i> surrogates from seawater by red abalone (<i>Haliotis rufescens</i>). Parasitology, 2016, 143, 1703-1712.	1.5	12
27	California mussels (<i>Mytilus californianus</i>) as sentinels for marine contamination with <i>Sarcocystis neurona</i> . Parasitology, 2016, 143, 762-769.	1.5	7
28	Dual congenital transmission of <i>Toxoplasma gondii</i> and <i>Sarcocystis neurona</i> in a late-term aborted pup from a chronically infected southern sea otter (<i>Enhydra lutris nereis</i>). Parasitology, 2016, 143, 276-288.	1.5	21
29	Coastal development and precipitation drive pathogen flow from land to sea: evidence from a Toxoplasma gondii and felid host system. Scientific Reports, 2016, 6, 29252.	3.3	56
30	Detection and characterization of diverse coccidian protozoa shed by California sea lions. International Journal for Parasitology: Parasites and Wildlife, 2016, 5, 5-16.	1.5	9
31	Comparable levels of microbial contamination in soil and on tomato crops after drip irrigation with treated wastewater or potable water. Agriculture, Ecosystems and Environment, 2016, 215, 140-150.	5.3	52
32	Sarcocystis fayeri in skeletal muscle of horses with neuromuscular disease. Neuromuscular Disorders, 2016, 26, 85-93.	0.6	18
33	Concentration and retention of <scp><i>T</i></scp> <i>oxoplasma gondii</i> oocysts by marine snails demonstrate a novel mechanism for transmission of terrestrial zoonotic pathogens in coastal ecosystems. Environmental Microbiology, 2015, 17, 4527-4537.	3.8	21
34	Effects of transparent exopolymer particles and suspended particles on the survival of Salmonella enterica serovar Typhimurium in seawater. FEMS Microbiology Ecology, 2015, 91, .	2.7	7
35	Surveillance for <scp><i>T</i></scp> <i>oxoplasma gondii</i> in <scp>C</scp> alifornia mussels (<scp><i>M</i></scp> <i>ytilus californianus</i>) reveals transmission of atypical genotypes from land to sea. Environmental Microbiology, 2015, 17, 4177-4188.	3.8	53
36	Attempted Detection of Toxoplasma gondii Oocysts in Environmental Waters Using a Simple Approach to Evaluate the Potential for Waterborne Transmission in the Galápagos Islands, Ecuador. EcoHealth, 2014, 11, 207-214.	2.0	20

#	Article	IF	CITATIONS
37	Molecular Epidemiology of Cryptosporidium spp. and Giardia spp. in Mussels (Mytilus californianus) and California Sea Lions (Zalophus californianus) from Central California. Applied and Environmental Microbiology, 2014, 80, 7732-7740.	3.1	25
38	PREVALENCE AND CHARACTERIZATION OFSALMONELLASHED BY CAPTIVE AND FREE-RANGE CALIFORNIA SEA LIONS (ZALOPHUS CALIFORNIANUS) FROM A REHABILITATION CENTER AND THREE STATE RESERVES ALONG THE CALIFORNIA COAST. Journal of Zoo and Wildlife Medicine, 2014, 45, 527-533.	0.6	8
39	Aquatic polymers can drive pathogen transmission in coastal ecosystems. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141287.	2.6	38
40	Estimating environmental conditions affecting protozoal pathogen removal in surface water wetland systems using a multi-scale, model-based approach. Science of the Total Environment, 2014, 493, 1036-1046.	8.0	12
41	Research Commentary: Association of Zoonotic Pathogens with Fresh, Estuarine, and Marine Macroaggregates. Microbial Ecology, 2013, 65, 928-933.	2.8	19
42	Simultaneous detection of Giardia lamblia and Cryptosporidium parvum (oo)cysts in soil using immunomagnetic separation and direct fluorescent antibody staining. Journal of Microbiological Methods, 2013, 94, 375-377.	1.6	10
43	Molecules to modeling: Toxoplasma gondii oocysts at the human–animal–environment interface. Comparative Immunology, Microbiology and Infectious Diseases, 2013, 36, 217-231.	1.6	75
44	Hydrologic and Vegetative Removal of Cryptosporidium parvum, Giardia lamblia, and Toxoplasma gondii Surrogate Microspheres in Coastal Wetlands. Applied and Environmental Microbiology, 2013, 79, 1859-1865.	3.1	20
45	A New Pathogen Transmission Mechanism in the Ocean: The Case of Sea Otter Exposure to the Land-Parasite Toxoplasma gondii. PLoS ONE, 2013, 8, e82477.	2.5	30
46	TEMPORAL ASSOCIATION BETWEEN LAND-BASED RUNOFF EVENTS AND CALIFORNIA SEA OTTER (ENHYDRA) TJ	ETQq0 0 0 0.8) rgBT /Overlc
47	Association of <i>Toxoplasma gondii</i> oocysts with fresh, estuarine, and marine macroaggregates. Limnology and Oceanography, 2012, 57, 449-456.	3.1	37

48	Climate and coastal habitat change: A recipe for a dirtier ocean. Marine Pollution Bulletin, 2012, 64, 1079-1080.	5.0	12
49	Effect of Estuarine Wetland Degradation on Transport of <i>Toxoplasma gondii</i> Surrogates from Land to Sea. Applied and Environmental Microbiology, 2010, 76, 6821-6828.	3.1	63
50	Detection of Toxoplasma gondii oocysts and surrogate microspheres in water using ultrafiltration and capsule filtration. Water Research, 2010, 44, 893-903.	11.3	47
51	Surface Properties of <i>Toxoplasma gondii</i> Oocysts and Surrogate Microspheres. Applied and Environmental Microbiology, 2009, 75, 1185-1191.	3.1	40

52 Toxoplasma gondii. , 0, , .