Jorg Baschnagel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8463339/publications.pdf Version: 2024-02-01

LOPC BASCHNACEL

#	Article	IF	CITATIONS
1	Theory of length-scale dependent relaxation moduli and stress fluctuations in glass-forming and viscoelastic liquids. Journal of Chemical Physics, 2022, 156, 164505.	1.2	6
2	The memory of thin polymer films generated by spin coating. European Physical Journal E, 2022, 45, .	0.7	2
3	Role of torsional potential in chain conformation, thermodynamics, and glass formation of simulated polybutadiene melts. Journal of Chemical Physics, 2022, 156, .	1.2	6
4	Relaxation moduli of glass-forming systems: temperature effects and fluctuations. Soft Matter, 2021, 17, 7867-7892.	1.2	5
5	Ensemble fluctuations matter for variances of macroscopic variables. European Physical Journal E, 2021, 44, 13.	0.7	6
6	General relations to obtain the time-dependent heat capacity from isothermal simulations. Journal of Chemical Physics, 2021, 154, 164501.	1.2	5
7	Fluctuations of non-ergodic stochastic processes. European Physical Journal E, 2021, 44, 54.	0.7	5
8	Glassy dynamics of a binary Voronoi fluid: a mode-coupling analysis. Journal of Physics Condensed Matter, 2021, 33, 064001.	0.7	10
9	Simple models for strictly non-ergodic stochastic processes of macroscopic systems. European Physical Journal E, 2021, 44, 125.	0.7	Ο
10	Composition fluctuations in polydisperse liquids: Glasslike effects well above the glass transition. Physical Review E, 2020, 102, 042611.	0.8	8
11	Translating molecular relaxations in non-equilibrated polymer melts into lifting macroscopic loads. Physical Review Materials, 2020, 4, .	0.9	8
12	Relaxation dynamics in supercooled oligomer liquids: From shear-stress fluctuations to shear modulus and structural correlations. Journal of Chemical Physics, 2019, 151, 054504.	1.2	12
13	Processing Pathways Decide Polymer Properties at the Molecular Level. Macromolecules, 2019, 52, 7146-7156.	2.2	105
14	Shear-stress fluctuations and relaxation in polymer glasses. Physical Review E, 2018, 97, 012502.	0.8	15
15	Voronoi glass-forming liquids: A structural study. Physical Review E, 2018, 97, 032132.	0.8	5
16	Shear-stress relaxation in free-standing polymer films. Physical Review E, 2018, 98, .	0.8	5
17	Long-range stress correlations in viscoelastic and glass-forming fluids. Soft Matter, 2018, 14, 6835-6848.	1.2	22
18	Continuous-time random-walk approach to supercooled liquids: Self-part of the van Hove function and related quantities. European Physical Journal E, 2018, 41, 71.	0.7	8

#	Article	IF	CITATIONS
19	Diffusion of copolymers composed of monomers with drastically different friction factors in copolymer/homopolymer blends. Journal of Chemical Physics, 2017, 146, 054905.	1.2	1
20	Optical nanoscopy characterization of nanofilms. Journal of Physics: Conference Series, 2017, 780, 012003.	0.3	1
21	Anomalous sound attenuation in Voronoi liquid. Journal of Chemical Physics, 2017, 146, 144502.	1.2	12
22	Numerical determination of shear stress relaxation modulus of polymer glasses. European Physical Journal E, 2017, 40, 43.	0.7	13
23	Molecular dynamics simulation of the capillary leveling of viscoelastic polymer films. Journal of Chemical Physics, 2017, 146, 203327.	1.2	2
24	Marginally compact hyperbranched polymer trees. Soft Matter, 2017, 13, 2499-2512.	1.2	6
25	Shear Modulus and Shear-Stress Fluctuations in Polymer Glasses. Physical Review Letters, 2017, 119, 147802.	2.9	20
26	A novel interferometric method for the study of the viscoelastic properties of ultra-thin polymer films determined from nanobubble inflation. Review of Scientific Instruments, 2017, 88, 093901.	0.6	3
27	Semiflexible Chains at Surfaces: Worm-Like Chains and beyond. Polymers, 2016, 8, 286.	2.0	36
28	Simple average expression for shear-stress relaxation modulus. Physical Review E, 2016, 93, 012103.	0.8	10
29	Shear-stress fluctuations in self-assembled transient elastic networks. Physical Review E, 2016, 93, 062611.	0.8	16
30	Disentanglement of Two Single Polymer Chains: Contacts and Knots. ACS Macro Letters, 2016, 5, 740-744.	2.3	2
31	Glass transition and relaxation behavior of supercooled polymer melts: An introduction to modeling approaches by molecular dynamics simulations and to comparisons with mode-coupling theory. , 2016, , 55-105.		14
32	The Voronoi liquid. Europhysics Letters, 2015, 112, 66003.	0.7	16
33	Glass formers display universal non-equilibrium dynamics on the level of single-particle jumps. Europhysics Letters, 2015, 109, 36004.	0.7	8
34	Simulated glass-forming polymer melts: Dynamic scattering functions, chain length effects, and mode-coupling theory analysis. European Physical Journal E, 2015, 38, 97.	0.7	22
35	Shear-stress relaxation and ensemble transformation of shear-stress autocorrelation functions. Physical Review E, 2015, 91, 022107.	0.8	35
36	Fluctuation-dissipation relation between shear stress relaxation modulus and shear stress autocorrelation function revisited. Molecular Physics, 2015, 113, 2881-2893.	0.8	25

#	Article	IF	CITATIONS
37	Two-dimensional polymeric liquids and polymer stars: learning from conflicting theories. Journal of Statistical Mechanics: Theory and Experiment, 2014, 2014, P04024.	0.9	3
38	Melt of polymer rings: The decorated loop model. Europhysics Letters, 2014, 105, 48005.	0.7	49
39	Hyperbranched polymer stars with Gaussian chain statistics revisited. European Physical Journal E, 2014, 37, 12.	0.7	6
40	Continuous-time random-walk approach to supercooled liquids. I. Different definitions of particle jumps and their consequences. Physical Review E, 2014, 89, 042603.	0.8	55
41	Continuous-time random-walk approach to supercooled liquids. II. Mean-square displacements in polymer melts. Physical Review E, 2014, 89, 042604.	0.8	27
42	New conserved structural fields for supercooled liquids. European Physical Journal E, 2014, 37, 2.	0.7	7
43	Strictly two-dimensional self-avoiding walks: Density crossover scaling. Polymer Science - Series C, 2013, 55, 181-211.	0.8	10
44	Compressibility and pressure correlations in isotropic solids and fluids. European Physical Journal E, 2013, 36, 131.	0.7	12
45	Shear modulus of simulated glass-forming model systems: Effects of boundary condition, temperature, and sampling time. Journal of Chemical Physics, 2013, 138, 12A533.	1.2	69
46	Communication: Pressure fluctuations in isotropic solids and fluids. Journal of Chemical Physics, 2013, 138, 191101.	1.2	16
47	Comment on "Molecular dynamics simulation study of nonconcatenated ring polymers in a melt. I. Statics―[J. Chem. Phys. 134, 204904 (2011)]. Journal of Chemical Physics, 2013, 139, 217101.	1.2	8
48	Diffusion Processes. , 2013, , 63-129.		1
49	Publisher's Note: Mechanical behavior of linear amorphous polymers: Comparison between molecular dynamics and finite-element simulations [Phys. Rev. E85, 021808 (2012)]. Physical Review E, 2012, 85, .	0.8	Ο
50	Impulsive correction to the elastic moduli obtained using the stress-fluctuation formalism in systems with truncated pair potential. Physical Review E, 2012, 86, 046705.	0.8	23
51	Strictly two-dimensional self-avoiding walks: Thermodynamic properties revisited. European Physical Journal E, 2012, 35, 93.	0.7	9
52	Mechanical behavior of linear amorphous polymers: Comparison between molecular dynamics and finite-element simulations. Physical Review E, 2012, 85, 021808.	0.8	17
53	Mode-coupling approach to polymer diffusion in an unentangled melt. I. The effect of density fluctuations. Physical Review E, 2012, 85, 051806.	0.8	26
54	Hydrodynamic and viscoelastic effects in polymer diffusion. Journal of Physics Condensed Matter, 2012, 24, 284105.	0.7	12

#	Article	IF	CITATIONS
55	Mode-coupling approach to polymer diffusion in an unentangled melt. II. The effect of viscoelastic hydrodynamic interactions. Physical Review E, 2012, 85, 051807.	0.8	29
56	Interchain Monomer Contact Probability in Two-Dimensional Polymer Solutions. Macromolecules, 2012, 45, 1646-1651.	2.2	7
57	Molecular dynamics simulations of the scratch test on linear amorphous polymer surfaces: A study of the local friction coefficient. Wear, 2011, 271, 2751-2758.	1.5	15
58	Simulated glass-forming polymer melts: Glass transition temperature and elastic constants of the glassy state. European Physical Journal E, 2011, 34, 97.	0.7	57
59	Scale-Free Static and Dynamical Correlations in Melts of Monodisperse and Flory-Distributed Homopolymers. Journal of Statistical Physics, 2011, 145, 1017-1126.	0.5	32
60	Non-ideality of polymer melts confined to nanotubes. Europhysics Letters, 2011, 93, 48002.	0.7	20
61	Polymer-Brush Lubricated Surfaces with Colloidal Inclusions under Shear Inversion. Physical Review Letters, 2011, 106, 168301.	2.9	31
62	Note: Scale-free center-of-mass displacement correlations in polymer films without topological constraints and momentum conservation. Journal of Chemical Physics, 2011, 135, 186101.	1.2	1
63	Scale-free center-of-mass displacement correlations in polymer melts without topological constraints and momentum conservation: A bond-fluctuation model study. Journal of Chemical Physics, 2011, 134, 234901.	1.2	19
64	Non-extensivity of the chemical potential of polymer melts. European Physical Journal E, 2010, 31, 229-237.	0.7	2
65	Polymer-brush lubrication in the limit of strong compression. European Physical Journal E, 2010, 33, 307-311.	0.7	46
66	Molecular dynamics simulations of glassy polymers. Soft Matter, 2010, 6, 3430.	1.2	249
67	Algebraic Displacement Correlation in Two-Dimensional Polymer Melts. Physical Review Letters, 2010, 105, 037802.	2.9	31
68	Molecular dynamics simulations of the chain dynamics in monodisperse oligomer melts and of the oligomer tracer diffusion in an entangled polymer matrix. Journal of Chemical Physics, 2010, 132, 194902.	1.2	33
69	Distance Dependence of Angular Correlations in Dense Polymer Solutions. Macromolecules, 2010, 43, 1621-1628.	2.2	4
70	Molecular dynamics simulations as a way to investigate the local physics of contact mechanics: a comparison between experimental data and numerical results. Journal Physics D: Applied Physics, 2010, 43, 455406.	1.3	14
71	Static properties of polymer melts in two dimensions. Journal of Chemical Physics, 2010, 132, .	1.2	51
72	Frictional Forces between Strongly Compressed, Nonentangled Polymer Brushes: Molecular Dynamics Simulations and Scaling Theory. Langmuir, 2010, 26, 6418-6429.	1.6	106

#	Article	IF	CITATIONS
73	Perimeter length and form factor in two-dimensional polymer melts. Physical Review E, 2009, 79, 050802.	0.8	27
74	A finite excluded volume bond-fluctuation model: Static properties of dense polymer melts revisited. Journal of Chemical Physics, 2009, 131, 064901.	1.2	17
75	Molecular dynamics simulations of concentrated polymer solutions in thin film geometry. I. Equilibrium properties near the glass transition. Journal of Chemical Physics, 2009, 131, 014902.	1.2	27
76	MD simulation of concentrated polymer solutions: Structural relaxation near the glass transition. European Physical Journal E, 2009, 28, 147-158.	0.7	27
77	Molecular dynamics simulations of concentrated polymer solutions in thin film geometry. II. Solvent evaporation near the glass transition. Journal of Chemical Physics, 2009, 131, 014903.	1.2	26
78	Static Rouse modes and related quantities: Corrections to chain ideality in polymer melts. European Physical Journal E, 2008, 26, 25-33.	0.7	26
79	Modeling Dielectric Relaxation in Polymer Glass Simulations: Dynamics in the Bulk and in Supported Polymer Films. Macromolecules, 2008, 41, 7729-7743.	2.2	66
80	Soft particle model for block copolymers. Journal of Chemical Physics, 2007, 127, 134905.	1.2	29
81	Why polymer chains in a melt are not random walks. Europhysics Letters, 2007, 77, 56003.	0.7	61
82	Bond formation and slow heterogeneous dynamics in adhesive spheres with long-ranged repulsion: Quantitative test of mode coupling theory. Physical Review E, 2007, 76, 031404.	0.8	6
83	Structural and conformational dynamics of supercooled polymer melts: Insights from first-principles theory and simulations. Physical Review E, 2007, 76, 051806.	0.8	40
84	Intramolecular long-range correlations in polymer melts: The segmental size distribution and its moments. Physical Review E, 2007, 76, 011803.	0.8	124
85	Structural properties of crystallizable polymer melts: Intrachain and interchain correlation functions. Physical Review E, 2007, 75, 041801.	0.8	25
86	Slow dynamics and glass transition in simulated free-standing polymer films: a possible relation between global and local glass transition temperatures. Journal of Physics Condensed Matter, 2007, 19, 205119.	0.7	50
87	On the dynamics and disentanglement in thin and two-dimensional polymer films. European Physical Journal: Special Topics, 2007, 141, 167-172.	1.2	54
88	Simulation of Phase Transitions of Single Polymer Chains: Recent Advances. Macromolecular Symposia, 2006, 237, 128-138.	0.4	28
89	Thickness-dependent reduction of the glass-transition temperature in thin polymer films with a free surface. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 2951-2967.	2.4	173
90	Computer simulations of supercooled polymer melts in the bulk and in confined geometry. Journal of Physics Condensed Matter, 2005, 17, R851-R953.	0.7	287

#	Article	IF	CITATIONS
91	Long Range Bond-Bond Correlations in Dense Polymer Solutions. Physical Review Letters, 2004, 93, 147801.	2.9	122
92	Static properties of a simulated supercooled polymer melt: Structure factors, monomer distributions relative to the center of mass, and triple correlation functions. Physical Review E, 2004, 69, 061801.	0.8	22
93	Static properties of end-tethered polymers in good solution: A comparison between different models. Journal of Chemical Physics, 2004, 120, 4012-4023.	1.2	95
94	Computer Simulation of the Glass Transition in Thin Films. AIP Conference Proceedings, 2004, , .	0.3	2
95	Computer Simulations of Polymers Close to Solid Interfaces: Some Selected Topics. ChemInform, 2004, 35, no.	0.1	0
96	Polymer Models on the Lattice. , 2004, , .		2
97	Dynamical properties of the slithering-snake algorithm: A numerical test of the activated-reptation hypothesis. European Physical Journal E, 2003, 10, 369-385.	0.7	15
98	Structure formation of supercooled polymers in confined geometries – A molecular-dynamics simulation study. European Physical Journal E, 2003, 12, 147-151.	0.7	13
99	Confinement effects on the slow dynamics of a supercooled polymer melt: Rouse modes and the incoherent scattering function. European Physical Journal E, 2003, 12, 167-171.	0.7	26
100	Computer Simulations of Polymers Close to Solid Interfaces: Some Selected Topics. Journal of Materials Science, 2003, 11, 159-173.	1.2	44
101	Class transition of polymer melts: test of theoretical concepts by computer simulation. Progress in Polymer Science, 2003, 28, 115-172.	11.8	253
102	Surface excess in dilute polymer solutions and the adsorption transition versus wetting phenomena. Journal of Chemical Physics, 2003, 118, 8489-8499.	1.2	53
103	Polymer-specific effects of bulk relaxation and stringlike correlated motion in the dynamics of a supercooled polymer melt. Journal of Chemical Physics, 2003, 119, 5290-5304.	1.2	123
104	Thermodynamic signature of the onset of caged dynamics in glass-forming liquids. Journal of Chemical Physics, 2002, 116, 865-868.	1.2	22
105	Gaussian ellipsoid model for confined polymer systems. Journal of Chemical Physics, 2002, 117, 4564-4577.	1.2	8
106	GLASS TRANSITION IN THIN POLYMER FILMS: A MOLECULAR DYNAMICS STUDY. International Journal of Modern Physics C, 2002, 13, 799-804.	0.8	4
107	Reduction of the glass transition temperature in polymer films: A molecular-dynamics study. Physical Review E, 2002, 65, 021507.	0.8	199
108	Glassy dynamics in thin polymer films: recent MD results. Journal of Non-Crystalline Solids, 2002, 307-310, 524-531.	1.5	8

#	Article	IF	CITATIONS
109	Adsorption Transition of a Polymer Chain at a Weakly Attractive Surface: Monte Carlo Simulation of Off-Lattice Models. Macromolecular Theory and Simulations, 2002, 11, 985-995.	0.6	79
110	Structure and dynamics of thin polymer films: a case study with the bond-fluctuation model. Polymer, 2002, 43, 467-476.	1.8	42
111	Static and dynamic properties of supercooled thin polymer films. European Physical Journal E, 2002, 8, 175-192.	0.7	48
112	Commentary on "Polymer thin films and surfaces: Possible effects of capillary waves―by S. Herminghaus. II. European Physical Journal E, 2002, 8, 247-249.	0.7	2
113	Simulation of Models for the Glass Transition: Is There Progress?. Lecture Notes in Physics, 2002, , 199-228.	0.3	5
114	Monte Carlo Simulation of Long Chain Polymer Melts:Â Crossover from Rouse to Reptation Dynamics. Macromolecules, 2001, 34, 1105-1117.	2.2	166
115	Glassy dynamics of simulated polymer melts: Coherent scattering and van Hove correlation functions. European Physical Journal E, 2001, 5, 229-243.	0.7	50
116	Glassy dynamics of simulated polymer melts: Coherent scattering and van Hove correlation functions. European Physical Journal E, 2001, 5, 245-256.	0.7	47
117	Polymer films in the normal-liquid and supercooled state: a review of recent Monte Carlo simulation results. Advances in Colloid and Interface Science, 2001, 94, 197-227.	7.0	74
118	Molecular Dynamics Simulation of Confined Glass Forming Liquids. Materials Research Society Symposia Proceedings, 2000, 651, 1.	0.1	2
119	Molecular dynamics of supercooled polymer films. European Physical Journal Special Topics, 2000, 10, Pr7-239-Pr7-242.	0.2	15
120	Molecular dynamics results on the pressure tensor of polymer films. Journal of Chemical Physics, 2000, 113, 4444-4453.	1.2	161
121	Dynamics of a supercooled polymer melt above the mode-coupling critical temperature: cage versus polymer-specific effects. Journal of Physics Condensed Matter, 2000, 12, 6365-6374.	0.7	32
122	Bridging the Gap Between Atomistic and Coarse-Grained Models of Polymers: Status and Perspectives. Advances in Polymer Science, 2000, , 41-156.	0.4	336
123	Dynamics of confined polymer melts : Recent Monte Carlo simulation results. European Physical Journal Special Topics, 2000, 10, Pr7-9-Pr7-14.	0.2	13
124	Monte Carlo and molecular dynamics simulation of the glass transition of polymers. Journal of Physics Condensed Matter, 1999, 11, A47-A55.	0.7	40
125	Investigating the influence of different thermodynamic paths on the structural relaxation in a glass-forming polymer melt. Journal of Physics Condensed Matter, 1999, 11, 2179-2192.	0.7	75
126	Molecular-dynamics simulation of a glassy polymer melt: Rouse model and cage effect. Computational and Theoretical Polymer Science, 1999, 9, 217-226.	1.1	113

#	Article	IF	CITATIONS
127	Growing range of correlated motion in a polymer melt on cooling towards the glass transition. Nature, 1999, 399, 246-249.	13.7	374
128	Molecular-dynamics simulation of a glassy polymer melt: Incoherent scattering function. European Physical Journal B, 1999, 10, 323-334.	0.6	98
129	Anomalous diffusion of polymers in supercooled melts near the glass transition. , 1999, , 124-139.		8
130	Adsorption kinetics of a bidisperse polymer solution. European Physical Journal B, 1998, 6, 45-55.	0.6	9
131	Monte Carlo simulation of stretched exponential relaxation near the glass transition. Phase Transitions, 1998, 65, 263-278.	0.6	5
132	Statics and Dynamics of Bidisperse Polymer Melts:  A Monte Carlo Study of the Bond-Fluctuation Model. Macromolecules, 1998, 31, 3856-3867.	2.2	40
133	Simulation of the glass transition in polymeric systems: Evidence for an underlying phase transition?. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1998, 77, 591-608.	0.6	15
134	On the Glass Transition in Polymer Films: Recent Monte Carlo Results. Materials Research Society Symposia Proceedings, 1998, 543, 157.	0.1	5
135	MONTE CARLO SIMULATION OF THE GLASS TRANSITION OF POLYMER MELTS: A TOOL FOR TESTING THEORETICAL CONCEPTS. , 1998, , .		1
136	Modeling polyethylene with the bond fluctuation model. Journal of Chemical Physics, 1997, 106, 738-748.	1.2	90
137	Adsorption of a bidisperse polymer mixture onto a flat wall. Physical Review E, 1997, 55, 3072-3086.	0.8	3
138	Computer simulation of models for the structural glass transition. , 1997, , 22-43.		0
139	Monte Carlo simulations of the polymer glass transition: From the test of theories to material modeling. Macromolecular Symposia, 1997, 121, 111-121.	0.4	Ο
140	The glass transition dynamics of polymer micronetwork colloids. A mode coupling analysis. Journal of Chemical Physics, 1997, 106, 3743-3756.	1.2	86
141	Dynamics of Polymer Melts above the Glass Transition:Â Monte Carlo Studies of the Bond Fluctuation Model. Macromolecules, 1997, 30, 3075-3085.	2.2	44
142	Entropy theory and glass transition: A test by Monte Carlo simulation. Journal of Research of the National Institute of Standards and Technology, 1997, 102, 159.	0.4	21
143	On the Adsorption Process in Polymer Brushes:Â A Monte Carlo Study. Macromolecules, 1996, 29, 1433-1441.	2.2	57
144	Entropy of glassy polymer melts: Comparison between Gibbs-DiMarzio theory and simulation. Physical Review E, 1996, 54, 1535-1543.	0.8	85

#	Article	IF	CITATIONS
145	Simulation Studies on the Dynamics of Polymers at Interfaces. Annual Review of Materials Research, 1996, 26, 107-134.	5.5	74
146	Concentration profile near the surface of polymer mixtures: a Monte Carlo study. Polymer, 1996, 37, 297-304.	1.8	32
147	Monte Carlo simulation studies of the interfaces between polymeric and other solids as models for fiber-matrix interactions in advanced composite materials. Macromolecular Theory and Simulations, 1996, 5, 417-448.	0.6	18
148	Aging effects in glassy polymers: a Monte Carlo study. Physica A: Statistical Mechanics and Its Applications, 1996, 233, 117-131.	1.2	18
149	The glass transition in polymer melts: a review of recent Monte Carlo results. Journal of Physics Condensed Matter, 1996, 8, 9599-9603.	0.7	9
150	Dynamics of Glassy Polymer Melts in Confined Geometry: A Monte Carlo Simulation. Journal De Physique, I, 1996, 6, 1271-1294.	1.2	40
151	Phase separation of symmetrical polymer mixtures in thin-film geometry. Journal of Statistical Physics, 1995, 80, 1009-1031.	0.5	48
152	On the equation of state for thermal polymer solutions and melts. Journal of Chemical Physics, 1995, 103, 7166-7179.	1.2	17
153	Monte Carlo simulation of the glass transition in polymer melts: An application of MCT. Transport Theory and Statistical Physics, 1995, 24, 1249-1268.	0.4	2
154	Monte Carlo simulation of the glass transition in polymeric systems: Recent developments. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1995, 71, 583-596.	0.6	2
155	Monte Carlo simulation of the glass transition in polymer melts: extended mode-coupling analysis. Journal of Physics Condensed Matter, 1995, 7, 6761-6780.	0.7	27
156	What can we learn from the Monte Carlo simulation of the glass transition of polymer melts?. Computational Materials Science, 1995, 4, 309-316.	1.4	6
157	Monte-Carlo Simulation of 3-Dimensional Glassy Polymer Melts: Reptation Versus Single Monomer Dynamics. Journal De Physique II, 1995, 5, 1035-1052.	0.9	15
158	On the internal temperature in polymer glass simulations. Journal of Chemical Physics, 1994, 101, 3326-3333.	1.2	8
159	Structural aspects of a three-dimensional lattice model for the glass transition of polymer melts: a Monte Carlo simulation. Physica A: Statistical Mechanics and Its Applications, 1994, 204, 47-75.	1.2	65
160	Analysis of the incoherent intermediate scattering function in the framework of the idealized mode-coupling theory: A Monte Carlo study for polymer melts. Physical Review B, 1994, 49, 135-146.	1.1	61
161	Monte Carlo simulation of the glass transition in two- and three-dimensional polymer melts. Journal of Non-Crystalline Solids, 1994, 172-174, 384-390.	1.5	4
162	Monte Carlo simulation of the glass transition in two―and threeâ€dimensional polymer melts: Influence of the spatial dimension. Journal of Chemical Physics, 1994, 101, 1616-1624.	1.2	14

#	Article	IF	CITATIONS
163	Glass Transition in Polymer Melts: Study of Chain-Length Effects by Monte Carlo Simulation. Macromolecules, 1994, 27, 3658-3665.	2.2	30
164	The glass transition in polymer melts. Macromolecular Symposia, 1994, 81, 63-76.	0.4	8
165	Monte Carlo simulation of the glass transition in three-dimensional dense polymer melts. Physica A: Statistical Mechanics and Its Applications, 1993, 201, 157-163.	1.2	1
166	Dynamics near the glass transition in two-dimensional polymer melts: a Monte Carlo simulation study. Journal of Physics Condensed Matter, 1993, 5, 5731-5742.	0.7	14
167	The influence of the cooling rate on the glass transition and the glassy state in three-dimensional dense polymer melts: a Monte Carlo study. Journal of Physics Condensed Matter, 1993, 5, 1597-1618.	0.7	83
168	Computer simulation of the glass transition of polymer melts. , 1993, , 5-7.		3
169	Monte Carlo simulation of models for single polyethylene coils. Macromolecules, 1992, 25, 3117-3124.	2.2	83
170	On the construction of coarseâ€grained models for linear flexible polymer chains: Distribution functions for groups of consecutive monomers. Journal of Chemical Physics, 1991, 95, 6014-6025.	1.2	115