
## Ulrich G Mueller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8463103/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The Evolution of Cooperation. Quarterly Review of Biology, 2004, 79, 135-160.                                                                                                                                                                                   | 0.1  | 885       |
| 2  | The Evolution of Agriculture in Insects. Annual Review of Ecology, Evolution, and Systematics, 2005, 36, 563-595.                                                                                                                                               | 8.3  | 490       |
| 3  | Ancient Tripartite Coevolution in the Attine Ant-Microbe Symbiosis. Science, 2003, 299, 386-388.                                                                                                                                                                | 12.6 | 321       |
| 4  | The Origin of the Attine Ant-Fungus Mutualism. Quarterly Review of Biology, 2001, 76, 169-197.                                                                                                                                                                  | 0.1  | 289       |
| 5  | Generalized antifungal activity and 454-screening<br>of <i>Pseudonocardia</i> and <i>Amycolatopsis</i> bacteria in nests of fungus-growing ants.<br>Proceedings of the National Academy of Sciences of the United States of America, 2009, 106,<br>17805-17810. | 7.1  | 199       |
| 6  | Fungus-farming insects: Multiple origins and diverse evolutionary histories. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15247-15249.                                                                            | 7.1  | 171       |
| 7  | Ant versus Fungus versus Mutualism: Antâ€Cultivar Conflict and the Deconstruction of the Attine<br>Antâ€Fungus Symbiosis. American Naturalist, 2002, 160, S67-S98.                                                                                              | 2.1  | 149       |
| 8  | Cryptic sex and many-to-one coevolution in the fungus-growing ant symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10702-10706.                                                                           | 7.1  | 137       |
| 9  | Flowers and Wild Megachilid Bees Share Microbes. Microbial Ecology, 2017, 73, 188-200.                                                                                                                                                                          | 2.8  | 128       |
| 10 | COEVOLUTION BETWEEN ATTINE ANTS AND ACTINOMYCETE BACTERIA: A REEVALUATION. Evolution;<br>International Journal of Organic Evolution, 2008, 62, 2894-2912.                                                                                                       | 2.3  | 118       |
| 11 | Evolution of cold-tolerant fungal symbionts permits winter fungiculture by leafcutter ants at the northern frontier of a tropical ant–fungus symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4053-4056.  | 7.1  | 85        |
| 12 | Ecology of microfungal communities in gardens of fungus-growing ants (Hymenoptera: Formicidae): a<br>year-long survey of three species of attine ants in Central Texas. FEMS Microbiology Ecology, 2011, 78,<br>244-255.                                        | 2.7  | 81        |
| 13 | Paleodistributions and Comparative Molecular Phylogeography of Leafcutter Ants (Atta spp.) Provide<br>New Insight into the Origins of Amazonian Diversity. PLoS ONE, 2008, 3, e2738.                                                                            | 2.5  | 77        |
| 14 | Comparative Dating of Attine Ant and Lepiotaceous Cultivar Phylogenies Reveals Coevolutionary<br>Synchrony and Discord. American Naturalist, 2010, 175, E126-E133.                                                                                              | 2.1  | 75        |
| 15 | Antagonistic interactions between garden yeasts and microfungal garden pathogens of leaf-cutting ants. Antonie Van Leeuwenhoek, 2009, 96, 331-342.                                                                                                              | 1.7  | 73        |
| 16 | Phylogenetic patterns of ant–fungus associations indicate that farming strategies, not only a<br>superior fungal cultivar, explain the ecological success of leafcutter ants. Molecular Ecology, 2018,<br>27, 2414-2434.                                        | 3.9  | 68        |
| 17 | GEOGRAPHIC VARIATION OF GENETIC AND BEHAVIORAL TRAITS IN NORTHERN AND SOUTHERN TÚNGARA<br>FROGS. Evolution; International Journal of Organic Evolution, 2006, 60, 1669-1679.                                                                                    | 2.3  | 65        |
| 18 | EVOLUTIONARY TRANSITIONS IN ENZYME ACTIVITY OF ANT FUNGUS GARDENS. Evolution; International Journal of Organic Evolution, 2010, 64, 2055-69.                                                                                                                    | 2.3  | 63        |

ULRICH G MUELLER

| #  | Article                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Microbiomes of ant castes implicate new microbial roles in the fungus-growing ant Trachymyrmex septentrionalis. Scientific Reports, 2011, 1, 204.                                                                                             | 3.3  | 63        |
| 20 | EVOLUTION OF ANT-CULTIVAR SPECIALIZATION AND CULTIVAR SWITCHING IN APTEROSTIGMA FUNGUS-GROWING ANTS. Evolution; International Journal of Organic Evolution, 2004, 58, 2252-2265.                                                              | 2.3  | 62        |
| 21 | Phylogeography of postâ€Pleistocene population expansion in a fungusâ€gardening ant and its microbial<br>mutualists. Molecular Ecology, 2008, 17, 4480-4488.                                                                                  | 3.9  | 62        |
| 22 | Symbiont recruitment versus ant-symbiont co-evolution in the attine ant–microbe symbiosis. Current<br>Opinion in Microbiology, 2012, 15, 269-277.                                                                                             | 5.1  | 60        |
| 23 | Monoculture of Leafcutter Ant Gardens. PLoS ONE, 2010, 5, e12668.                                                                                                                                                                             | 2.5  | 60        |
| 24 | Free-living fungal symbionts (Lepiotaceae) of fungus-growing ants (Attini: Formicidae). Mycologia,<br>2009, 101, 206-210.                                                                                                                     | 1.9  | 59        |
| 25 | Symbiont fidelity and the origin of species in fungus-growing ants. Nature Communications, 2012, 3, 840.                                                                                                                                      | 12.8 | 57        |
| 26 | Complex host-pathogen coevolution in the Apterostigma fungus-growing ant-microbe symbiosis. BMC<br>Evolutionary Biology, 2006, 6, 88.                                                                                                         | 3.2  | 54        |
| 27 | Phylogeny of leafcutter ants in the genus Atta Fabricius (Formicidae: Attini) based on mitochondrial and nuclear DNA sequences. Molecular Phylogenetics and Evolution, 2009, 51, 427-437.                                                     | 2.7  | 51        |
| 28 | Cryptic sexual populations account for genetic diversity and ecological success in a widely distributed, asexual fungus-growing ant. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12366-12371. | 7.1  | 51        |
| 29 | Blind trust in unblinded observation in Ecology, Evolution, and Behavior. Frontiers in Ecology and Evolution, 2015, 3, .                                                                                                                      | 2.2  | 50        |
| 30 | Bacterial microbiomes from vertically transmitted fungal inocula of the leafâ€cutting ant <i>Atta<br/>texana</i> . Environmental Microbiology Reports, 2016, 8, 630-640.                                                                      | 2.4  | 50        |
| 31 | The molecular phylogenetics of <i>Trachymyrmex</i> Forel ants and their fungal cultivars provide<br>insights into the origin and coevolutionary history of â€`higherâ€attine' ant agriculture. Systematic<br>Entomology, 2019, 44, 939-956.   | 3.9  | 50        |
| 32 | Biogeography of mutualistic fungi cultivated by leafcutter ants. Molecular Ecology, 2017, 26,<br>6921-6937.                                                                                                                                   | 3.9  | 49        |
| 33 | Specialization and group size: brain and behavioural correlates of colony size in ants lacking morphological castes. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142502.                                            | 2.6  | 46        |
| 34 | The Most Relictual Fungus-Farming Ant Species Cultivates the Most Recently Evolved and Highly Domesticated Fungal Symbiont Species. American Naturalist, 2015, 185, 693-703.                                                                  | 2.1  | 45        |
| 35 | No sex in fungus-farming ants or their crops. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 2611-2616.                                                                                                                  | 2.6  | 44        |
| 36 | Bacterial community composition and diversity in an ancestral ant fungus symbiosis. FEMS<br>Microbiology Ecology, 2015, 91, fiv073.                                                                                                           | 2.7  | 44        |

ULRICH G MUELLER

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Antifungal Diketopiperazines from Symbiotic Fungus of Fungus-Growing Ant Cyphomyrmex minutus.<br>Journal of Chemical Ecology, 1999, 25, 935-941.                                                                           | 1.8 | 43        |
| 38 | Agro-predation: usurpation of attine fungus gardens by Megalomyrmex ants. Die<br>Naturwissenschaften, 2000, 87, 549-554.                                                                                                   | 1.6 | 42        |
| 39 | A breakthrough innovation in animal evolution. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5287-5288.                                                                      | 7.1 | 40        |
| 40 | Frontier mutualism: coevolutionary patterns at the northern range limit of the leaf-cutter<br>ant–fungus symbiosis. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 3050-3059.                         | 2.6 | 40        |
| 41 | Spatial Structure of the Mormon Cricket Gut Microbiome and its Predicted Contribution to Nutrition and Immune Function. Frontiers in Microbiology, 2017, 8, 801.                                                           | 3.5 | 37        |
| 42 | Artificial Selection on Microbiomes To Breed Microbiomes That Confer Salt Tolerance to Plants.<br>MSystems, 2021, 6, e0112521.                                                                                             | 3.8 | 36        |
| 43 | Placement of attine ant-associated Pseudonocardia in a global Pseudonocardia phylogeny<br>(Pseudonocardiaceae, Actinomycetales): a test of two symbiont-association models. Antonie Van<br>Leeuwenhoek, 2010, 98, 195-212. | 1.7 | 34        |
| 44 | Cooperation, conflict, and coevolution in the attine ant-fungus symbiosis. Behavioral Ecology, 2006, 17, 291-296.                                                                                                          | 2.2 | 26        |
| 45 | Metabolism and the Rise of Fungus Cultivation by Ants. American Naturalist, 2014, 184, 364-373.                                                                                                                            | 2.1 | 26        |
| 46 | Microbiome breeding: conceptual and practical issues. Trends in Microbiology, 2022, 30, 997-1011.                                                                                                                          | 7.7 | 24        |
| 47 | Sexual transmission of beneficial microbes. Trends in Ecology and Evolution, 2015, 30, 438-440.                                                                                                                            | 8.7 | 23        |
| 48 | Shared <i>Escovopsis</i> parasites between leaf-cutting and non-leaf-cutting ants in the higher attine fungus-growing ant symbiosis. Royal Society Open Science, 2015, 2, 150257.                                          | 2.4 | 23        |
| 49 | Gone to Texas: phylogeography of two <i>Trachymyrmex</i> (Hymenoptera: Formicidae) species along<br>the southeastern coastal plain of North America. Biological Journal of the Linnean Society, 2015, 114,<br>689-698.     | 1.6 | 21        |
| 50 | Genetic relationships between native and introduced populations of the little fire ant Wasmannia auropunctata. Diversity and Distributions, 2007, 13, 573-579.                                                             | 4.1 | 20        |
| 51 | Fitness consequences of nest infiltration by the mutualistâ€exploiter <i>Megalomyrmex adamsae</i> .<br>Ecological Entomology, 2012, 37, 453-462.                                                                           | 2.2 | 19        |
| 52 | Sperm length evolution in the fungus-growing ants. Behavioral Ecology, 2009, 20, 38-45.                                                                                                                                    | 2.2 | 18        |
| 53 | Nesting Biology and Fungiculture of the Fungus-Growing Ant, <i>Mycetagroicus cerradensis</i> : New<br>Light on the Origin of Higher Attine Agriculture. Journal of Insect Science, 2011, 11, 1-14.                         | 1.5 | 18        |
| 54 | Landscape genomics of an obligate mutualism: Concordant and discordant population structures between the leafcutter ant <i>Atta texana</i> and its two main fungal symbiont types. Molecular Ecology, 2019, 28, 2831-2845. | 3.9 | 18        |

ULRICH G MUELLER

| #  | Article                                                                                                                                                                                                        | IF               | CITATIONS          |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------|
| 55 | Polymorphic microsatellite markers for the symbiotic fungi cultivated by leaf cutter ants (Attini,) Tj ETQq1 1 0.78                                                                                            | 4314 rgB⊺<br>4.8 | ſ/Qyerlock         |
| 56 | Ant-fungal species combinations engineer physiological activity of fungus gardens. Journal of Experimental Biology, 2014, 217, 2540-7.                                                                         | 1.7              | 16                 |
| 57 | Assessing the role of β-ocimene in regulating foraging behavior of the honey bee, Apis mellifera.<br>Apidologie, 2016, 47, 135-144.                                                                            | 2.0              | 16                 |
| 58 | No evidence for female mate choice based on genetic similarity in the túngara frog Physalaemus pustulosus. Behavioral Ecology and Sociobiology, 2006, 59, 796-804.                                             | 1.4              | 15                 |
| 59 | Construction of chimaeric gardens through fungal intercropping: a symbiont choice experiment in the leafcutter ant Atta texana (Attini, Formicidae). Behavioral Ecology and Sociobiology, 2010, 64, 1125-1133. | 1.4              | 15                 |
| 60 | Fungus-gardening ants prefer native fungal species: do ants control their crops?. Behavioral Ecology, 2012, 23, 1250-1256.                                                                                     | 2.2              | 15                 |
| 61 | Potential Distribution of Six North American Higher-Attine Fungus-Farming Ant (Hymenoptera:) Tj ETQq1 1 0.784                                                                                                  | -314 rgBT<br>1.5 | /Overlock 10<br>14 |
| 62 | Sensory ecology of the frog-eating bat, <i>Trachops cirrhosus</i> , from DNA metabarcoding and behavior. Behavioral Ecology, 2020, 31, 1420-1428.                                                              | 2.2              | 14                 |
| 63 | High diversity and multiple invasions to North America by fungi grown by the northern-most<br>Trachymyrmex and Mycetomoellerius ant species. Fungal Ecology, 2020, 44, 100878.                                 | 1.6              | 11                 |
| 64 | Effects of substrate, ant and fungal species on plant fiber degradation in a fungus-gardening ant symbiosis. Journal of Insect Physiology, 2017, 98, 301-308.                                                  | 2.0              | 9                  |
| 65 | Partitioning the effects of mating and nuptial feeding on the microbiome in giftâ€giving insects.<br>Environmental Microbiology Reports, 2017, 9, 104-112.                                                     | 2.4              | 9                  |
| 66 | Intraspecific variation and emendation of Hannaella kunmingensis. Mycological Progress, 2013, 12, 157-165.                                                                                                     | 1.4              | 6                  |
| 67 | Nuclear populations of the multinucleate fungus of leafcutter ants can be dekaryotized and recombined to manipulate growth of nutritive hyphal nodules harvested by the ants. Mycologia, 2017, 109, 1-15.      | 1.9              | 6                  |