Daniel Ramos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8462906/publications.pdf

Version: 2024-02-01

42 1,973 22 41 papers citations h-index g-index

42 42 42 2350 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Photonic and Optomechanical Thermometry. Optics, 2022, 3, 159-176.	1.2	2
2	Hydrodynamic assisted multiparametric particle spectrometry. Scientific Reports, 2021, 11, 3535.	3.3	4
3	Nanomechanical Molecular Mass Sensing Using Suspended Microchannel Resonators. Sensors, 2021, 21, 3337.	3.8	7
4	High Dynamic Range Nanowire Resonators. Nano Letters, 2021, 21, 6617-6624.	9.1	19
5	Micro-Kelvin Resolution at Room Temperature Using Nanomechanical Thermometry. ACS Omega, 2021, 6, 23052-23058.	3.5	4
6	A Review on Theory and Modelling of Nanomechanical Sensors for Biological Applications. Processes, 2021, 9, 164.	2.8	18
7	Photonic and Thermal Modelling of Microrings in Silicon, Diamond and GaN for Temperature Sensing. Nanomaterials, 2020, 10, 934.	4.1	15
8	Optical Transduction for Vertical Nanowire Resonators. Nano Letters, 2020, 20, 2359-2369.	9.1	13
9	Real-Time Particle Spectrometry in Liquid Environment Using Microfluidic-Nanomechanical Resonators. , 2019, , .		2
10	Coherent Optical Transduction of Suspended Microcapillary Resonators for Multi-Parameter Sensing Applications. Sensors, 2019, 19, 5069.	3.8	9
11	Mechano-Optical Analysis of Single Cells with Transparent Microcapillary Resonators. ACS Sensors, 2019, 4, 3325-3332.	7.8	18
12	Controlling the Color and Effective Refractive Index of Metal-Anodic Aluminum Oxide (AAO)–Al Nanostructures: Morphology of AAO. Journal of Physical Chemistry C, 2018, 122, 957-963.	3.1	31
13	Direct Detection of OXA-48 Carbapenemase Gene in Lysate Samples through Changes in Mechanical Properties of DNA Monolayers upon Hybridization. Analytical Chemistry, 2018, 90, 968-973.	6.5	3
14	Nanomechanical Plasmon Spectroscopy of Single Gold Nanoparticles. Nano Letters, 2018, 18, 7165-7170.	9.1	21
15	Effect of water-DNA interactions on elastic properties of DNA self-assembled monolayers. Scientific Reports, 2017, 7, 536.	3.3	33
16	Optimization of the readout of microdrum optomechanical resonators. Microelectronic Engineering, 2017, 183-184, 37-41.	2.4	5
17	Highly Sensitive Measurement of Liquid Density in Air Using Suspended Microcapillary Resonators. Sensors, 2015, 15, 7650-7657.	3.8	23
18	Modeling of transient thermoelectric transport in Harman method for films and nanowires. International Journal of Thermal Sciences, 2015, 89, 193-202.	4.9	9

#	Article	IF	CITATIONS
19	Non-linear mixing in coupled photonic crystal nanobeam cavities due to cross-coupling opto-mechanical mechanisms. Applied Physics Letters, 2014, 105, 181121.	3.3	10
20	Detection of cancer biomarkers in serum using a hybrid mechanical and optoplasmonic nanosensor. Nature Nanotechnology, 2014, 9, 1047-1053.	31.5	221
21	Hydration Induced Stress on DNA Monolayers Grafted on Microcantilevers. Langmuir, 2014, 30, 10962-10969.	3.5	18
22	Optical bistability with a repulsive optical force in coupled silicon photonic crystal membranes. Applied Physics Letters, $2013,103,1$	3.3	14
23	Nanomechanical resonant structures in single-crystal diamond. Applied Physics Letters, 2013, 103, .	3.3	63
24	Silicon nanowires: where mechanics and optics meet at the nanoscale. Scientific Reports, 2013, 3, 3445.	3.3	36
25	Tapered silicon nanowires for enhanced nanomechanical sensing. Applied Physics Letters, 2013, 103, .	3.3	19
26	Optical back-action in silicon nanowire resonators: bolometric versus radiation pressure effects. New Journal of Physics, 2013, 15, 035001.	2.9	20
27	Optomechanics with Silicon Nanowires by Harnessing Confined Electromagnetic Modes. Nano Letters, 2012, 12, 932-937.	9.1	40
28	Shedding Light on Axial Stress Effect on Resonance Frequencies of Nanocantilevers. ACS Nano, 2011, 5, 4269-4275.	14.6	34
29	Exponential tuning of the coupling constant of coupled microcantilevers by modifying their separation. Applied Physics Letters, 2011, 98, .	3.3	37
30	Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires. Nature Nanotechnology, 2010, 5, 641-645.	31.5	235
31	Arrays of Dual Nanomechanical Resonators for Selective Biological Detection. Analytical Chemistry, 2009, 81, 2274-2279.	6.5	58
32	Mass Sensing Based on Deterministic and Stochastic Responses of Elastically Coupled Nanocantilevers. Nano Letters, 2009, 9, 4122-4127.	9.1	104
33	Label-free detection of DNA hybridization based on hydration-induced tension in nucleic acid films. Nature Nanotechnology, 2008, 3, 301-307.	31.5	194
34	Detection of bacteria based on the thermomechanical noise of a nanomechanical resonator: origin of the response and detection limits. Nanotechnology, 2008, 19, 035503.	2.6	63
35	Phototermal self-excitation of nanomechanical resonators in liquids. Applied Physics Letters, 2008, 92, 173108.	3.3	62
36	Underlying mechanisms of the self-sustained oscillation of a nanomechanical stochastic resonator in a liquid. Physical Review B, 2007, 76, .	3.2	23

#	Article	IF	CITATION
37	Role of the gold film nanostructure on the nanomechanical response of microcantilever sensors. Journal of Applied Physics, 2007, 101, 034904.	2.5	45
38	Study of the origin of bending induced by bimetallic effect on microcantilever. Sensors, 2007, 7, 1757-1765.	3.8	52
39	Measurement of the Mass and Rigidity of Adsorbates on a Microcantilever Sensor. Sensors, 2007, 7, 1834-1845.	3.8	27
40	Photothermal excitation of microcantilevers in liquids. Journal of Applied Physics, 2006, 99, 124904.	2.5	105
41	Effect of the adsorbate stiffness on the resonance response of microcantilever sensors. Applied Physics Letters, 2006, 89, 224104.	3.3	151
42	Origin of the response of nanomechanical resonators to bacteria adsorption. Journal of Applied Physics, 2006, 100, 106105.	2.5	106