
Victoria L Sork

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8462770/publications.pdf Version: 2024-02-01

1Influence of Plocene and Pleistocene climates on hybridization patterns between two closely related1.42Landscape Genomics to Enable Conservation Actions: The California Conservation Genomics Project.1.03High-quality genome and methylomes illustrate features underlying evolutionary success of oaks.5.84Landscape genomics of (-) Quercus lobata (-) reveals genes involved in local climate adaptation at multiple spatial scales. Molecular Ecology, 2021, 30, 406-423.2.05Sharing and reporting benefits from biodiversity research. Molecular Ecology, 2021, 30, 1103-1107.2.06Genome-Wide Variation in DNA Methylation Predicts Variation in Leaf Traits in an Ecosystem-foundational Oak Species. Forests, 2021, 12, 569.0.97Shoring of F BLD BURST IS ASSOCIATED WITH CLIMATE OF MATERNAL ORIGIN IN QUERCUS LOBATA PROGENY A COMMON CARDEN. MadroA±o, 2021, 68.0.39Genomic landscape of the global oak phylogeny. New Phylologist, 2020, 226, 1198-1212.3.510Experimental DNA Demethylation Associates with Changes in Growth and Gene Expression of Oak Tree Scalings. G3: Genes, Genetics, 2020, 10, 1019-1028.2.712VARATION IN LEAF SHAPE IN A QUERCUS LOBATA COMMON GARDEN: TESTS FOR ADAPITATION TO CLIMATE MO PHYSIOLOGICAL CONSEQUENCES. MadroA±o, 2020, 7, 32.3.313Recently response to water stress in valley oak (-) Quercus (-)) Is shaped by different gene a short scace provide of Stem Education, 2020, 7, 32.3.314International DNA Demethylation Associates with Changes in Growth and Gene Expression of Oak Tree Scalings. G3: Genes, Genomes, Genetics, 2020, 10, 1019-1028.3.314Intern	
2 Journal of Heredity, 2022, 113, 577-588. 1.0 3 High-quality genome and methylomes illustrate features underlying evolutionary success of oaks. 5.8 4 Landscape genomics of <1>Quercus lobata <(1> reveals genes involved in local climate adaptation at multiple spatial scales. Molecular Ecology, 2021, 30, 406-423. 2.0 5 Sharing and reporting benefits from biodiversity research. Molecular Ecology, 2021, 30, 1103-1107. 2.0 6 Cenome-Wide Variation in DNA Methylation Predicts Variation in Leaf Traits in an Ecosystem-Foundational Oak Species. Forests, 2021, 12, 569. 0.9 7 Shows Evidence of Climate-Associated Asymmetric Gene Exchange. Journal of Heredity, 2021, 112. 1.0 6 Genomic Iandscape of the global oak phylogeny. New Phytologist, 2020, 226, 1198-1212. 0.3 7 Shows Evidence of the global oak phylogeny. New Phytologist, 2020, 226, 1198-1212. 3.5 10 Experimental DNA Demethylation Associates with Changes in Growth and Gene Expression of Oak Tree Seedlings. G3: Genes, Genomes, Genetics, 2020, 10, 1019-1028. 0.8 11 Creating inclusive classrooms by engaging STEM faculty in culturally responsive teaching workshops. International Journal of STEM Education, 2020, 7, 32. 2.7 12 VARIATION IN LEAF SHAPE IN A QUERCUS LOBATA COMMON CARDEN: TESTS FOR ADAPTATION TO CLIMATE O.3 0.3 12 VARIATION IN	7
3 Nature Communications, 2022, 13, 2047. 5.8 4 Landscape genomics of <i>Quercus lobata </i> Quercus lobata , 2021, 30, 406-423. 2.0 5 Sharing and reporting benefits from biodiversity research. Molecular Ecology, 2021, 30, 1103-1107. 2.0 6 Genome-Wide Variation in DNA Methylation Predicts Variation in Leaf Traits in an Ecosystem-Foundational Oak Species. Forests, 2021, 12, 569. 0.9 7 Ancient Introgression Between Distantly Related White Oaks (<)-Quercus	59
4 multiple spätial scales. Molecular Ecology, 2021, 30, 4Õ6-423. 2.0 5 Sharing and reporting benefits from biodiversity research. Molecular Ecology, 2021, 30, 1103-1107. 2.0 6 Genome-Wide Variation in DNA Methylation Predicts Variation in Leaf Traits in an Ecosystem-Foundational Oak Species. Forests, 2021, 12, 569. 0.9 7 Ancient Introgression Between Distantly Related White Oaks (<) Quercus (/) sect. <i>Quercus (/) sec</i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>	30
6 Genome-Wide Variation in DNA Methylation Predicts Variation in Leaf Traits in an Ecosystem-Foundational Oak Species. Forests, 2021, 12, 569. 0.9 7 Anclent Introgression Between Distantly Related White Oaks (<) Quercus Shows Evidence of Climate-Associated Asymmetric Gene Exchange. Journal of Heredity, 2021, 112, 663-670. 1.0 8 TIMING OF BUD BURST IS ASSOCIATED WITH CLIMATE OF MATERNAL ORIGIN IN QUERCUS LOBATA PROCENY IN A COMMON GARDEN. MadroÃ+o, 2021, 68,. 0.3 9 Genomic landscape of the global oak phylogeny. New Phytologist, 2020, 226, 1198-1212. 3.5 10 Experimental DNA Demethylation Associates with Changes in Growth and Gene Expression of Oak Tree Seedlings. G3: Genes, Genomes, Genetics, 2020, 10, 1019-1028. 0.8 11 Creating inclusive classrooms by engaging STEM faculty in culturally responsive teaching workshops. 2.7 12 VARIATION IN LEAF SHAPE IN A QUERCUS LOBATA COMMON GARDEN: TESTS FOR ADAPTATION TO CLIMATE 0.3 12 Seedling response to water stress in valley oak (<) Quercus lobata	30
6 Ecosystem-Foundational Oak Species'. Forests, 2021, 12, 569. 0.9 7 Ancient Introgression Between Distantly Related White Oaks (<i>Quercus</i> Shows Evidence of Climate-Associated Asymmetric Gene Exchange. Journal of Heredity, 2021, 112, 663-670. 1.0 8 TIMING OF BUD BURST IS ASSOCIATED WITH CLIMATE OF MATERNAL ORIGIN IN QUERCUS LOBATA PROGENY IN A COMMON GARDEN. Madroño, 2021, 68, . 0.3 9 Genomic landscape of the global oak phylogeny. New Phytologist, 2020, 226, 1198-1212. 3.5 10 Experimental DNA Demethylation Associates with Changes in Growth and Gene Expression of Oak Tree Seedlings. G3: Genes, Genomes, Genetics, 2020, 10, 1019-1028. 0.8 11 Creating inclusive classrooms by engaging STEM faculty in culturally responsive teaching workshops. International Journal of STEM Education, 2020, 7, 32. 2.7 12 VARIATION IN LEAF SHAPE IN A QUERCUS LOBATA COMMON GARDEN: TESTS FOR ADAPTATION TO CLIMATE AND PHYSIOLOGICAL CONSEQUENCES. Madroño, 2020, 67, . 0.3	19
 Shows Evidence of Climate-Associated Asymmetric Gene Exchange. Journal of Heredity, 2021, 112, 663-670. TIMING OF BUD BURST IS ASSOCIATED WITH CLIMATE OF MATERNAL ORIGIN IN QUERCUS LOBATA PROGENY IN A COMMON GARDEN. Madroño, 2021, 68, . Genomic landscape of the global oak phylogeny. New Phytologist, 2020, 226, 1198-1212. Experimental DNA Demethylation Associates with Changes in Growth and Gene Expression of Oak Tree Seedlings. G3: Genes, Genomes, Genetics, 2020, 10, 1019-1028. Creating inclusive classrooms by engaging STEM faculty in culturally responsive teaching workshops. Creating inclusive classrooms by engaging STEM faculty in culturally responsive teaching workshops. VARIATION IN LEAF SHAPE IN A QUERCUS LOBATA COMMON GARDEN: TESTS FOR ADAPTATION TO CLIMATE AND PHYSIOLOGICAL CONSEQUENCES. Madroño, 2020, 67, . Seedling response to water stress in valley oak (<>Quercus lobata shaped by different gene 	8
8 IN A COMMON GARDEN. Madroño, 2021, 68, . 0.3 9 Genomic landscape of the global oak phylogeny. New Phytologist, 2020, 226, 1198-1212. 3.5 10 Experimental DNA Demethylation Associates with Changes in Growth and Gene Expression of Oak Tree Seedlings. G3: Genes, Genomes, Genetics, 2020, 10, 1019-1028. 0.8 11 Creating inclusive classrooms by engaging STEM faculty in culturally responsive teaching workshops. International Journal of STEM Education, 2020, 7, 32. 2.7 12 VARIATION IN LEAF SHAPE IN A QUERCUS LOBATA COMMON GARDEN: TESTS FOR ADAPTATION TO CLIMATE AND PHYSIOLOGICAL CONSEQUENCES. Madroño, 2020, 67, . 0.3	3
10 Experimental DNA Demethylation Associates with Changes in Growth and Gene Expression of Oak Tree 0.8 10 Creating inclusive classrooms, Genetics, 2020, 10, 1019-1028. 0.8 11 Creating inclusive classrooms by engaging STEM faculty in culturally responsive teaching workshops. 2.7 12 VARIATION IN LEAF SHAPE IN A QUERCUS LOBATA COMMON GARDEN: TESTS FOR ADAPTATION TO CLIMATE AND PHYSIOLOGICAL CONSEQUENCES. Madroño, 2020, 67, . 0.3 12 Seedling response to water stress in valley oak (<i>Quercus lobata</i>) is shaped by different gene 0.0	4
10 Seedlings. G3: Genes, Genomes, Genetics, 2020, 10, 1019-1028. 0.8 11 Creating inclusive classrooms by engaging STEM faculty in culturally responsive teaching workshops. International Journal of STEM Education, 2020, 7, 32. 2.7 12 VARIATION IN LEAF SHAPE IN A QUERCUS LOBATA COMMON GARDEN: TESTS FOR ADAPTATION TO CLIMATE AND PHYSIOLOGICAL CONSEQUENCES. Madroño, 2020, 67, . 0.3 12 Seedling response to water stress in valley oak (<i>Quercus lobata</i>) is shaped by different gene 0.3	186
11 International Journal of STEM Education, 2020, 7, 32. 2.7 12 VARIATION IN LEAF SHAPE IN A QUERCUS LOBATA COMMON GARDEN: TESTS FOR ADAPTATION TO CLIMATE AND PHYSIOLOGICAL CONSEQUENCES. Madroño, 2020, 67, . 0.3 18 Seedling response to water stress in valley oak (<i>Quercus lobata</i>) is shaped by different gene 0.0	11
AND PHYSIOLOGICAL CONSEQUENCES. Madroño, 2020, 67, . Seedling response to water stress in valley oak (<i>Quercus lobata</i>) is shaped by different gene	41
	4
	19
 Influence of a climatic gradient on genetic exchange between two oak species. American Journal of Botany, 2019, 106, 864-878. 	7
Adaptational lag to temperature in valley oak (<i>Quercus lobata</i>) can be mitigated by genome-informed assisted gene flow. Proceedings of the National Academy of Sciences of the United 3.3 States of America, 2019, 116, 25179-25185.	89
 Historical interactions are predicted to be disrupted under future climate change: The case of lace 1.4 1.4 	3
Genomic data reveal cryptic lineage diversification and introgression in Californian golden cup oaks (section <i>Protobalanus</i>). New Phytologist, 2018, 218, 804-818. 3.5	56

Applying landscape genomic tools to forest management and restoration of Hawaiian koa (<i>Acacia) Tj ETQq0 0 0 rgBT /Overlock 10 Tf $\frac{13}{45}$

#	Article	IF	CITATIONS
19	The roles of geography and environment in divergence within and between two closely related plant species inhabiting an islandâ€ike habitat. Journal of Biogeography, 2018, 45, 381-393.	1.4	16
20	Assessment of shared alleles in drought-associated candidate genes among southern California white oak species (Quercus sect. Quercus). BMC Genetics, 2018, 19, 88.	2.7	26
21	RADseq data reveal ancient, but not pervasive, introgression between Californian tree and scrub oak species (<i>Quercus</i> sect. <i>Quercus</i> : Fagaceae). Molecular Ecology, 2018, 27, 4556-4571.	2.0	33
22	Landscape genomics provides evidence of climateâ€associated genetic variation in Mexican populations of <i>Quercus rugosa</i> . Evolutionary Applications, 2018, 11, 1842-1858.	1.5	54
23	The relative contributions of seed and pollen dispersal to gene flow and genetic diversity in seedlings of a tropical palm. Molecular Ecology, 2018, 27, 3159-3173.	2.0	26
24	Whole-transcriptome response to water stress in a California endemic oak, <i>Quercus lobata</i> . Tree Physiology, 2017, 37, 632-644.	1.4	37
25	Tropical insect diversity: evidence of greater host specialization in seedâ€feeding weevils. Ecology, 2017, 98, 2180-2190.	1.5	26
26	Phylogenomic inferences from reference-mapped and de novo assembled short-read sequence data using RADseq sequencing of California white oaks (<i>Quercus</i> section <i>Quercus</i>). Genome, 2017, 60, 743-755.	0.9	50
27	Genomic Quantitative Genetics to Study Evolution in the Wild. Trends in Ecology and Evolution, 2017, 32, 897-908.	4.2	127
28	Genomic Studies of Local Adaptation in Natural Plant Populations. Journal of Heredity, 2017, 109, 3-15.	1.0	83
29	Impacts of humanâ€induced environmental disturbances on hybridization between two ecologically differentiated Californian oak species. New Phytologist, 2017, 213, 942-955.	3.5	37
30	Comparison of phylogeographical structures of a lichenâ€forming fungus and its green algal photobiont in western North America. Journal of Biogeography, 2016, 43, 932-943.	1.4	12
31	Diversity in insect seed parasite guilds at large geographical scale: the roles of host specificity and spatial distance. Journal of Biogeography, 2016, 43, 1620-1630.	1.4	11
32	Genetic evidence for centralâ€marginal hypothesis in a Cenozoic relict tree species across its distribution in China. Journal of Biogeography, 2016, 43, 2173-2185.	1.4	25
33	Speciesâ€wide patterns of <scp>DNA</scp> methylation variation in <i>Quercus lobata</i> and their association with climate gradients. Molecular Ecology, 2016, 25, 1665-1680.	2.0	159
34	Epigenetics in ecology and evolution: what we know andÂwhat we need to know. Molecular Ecology, 2016, 25, 1631-1638.	2.0	229
35	First Draft Assembly and Annotation of the Genome of a California Endemic Oak <i>Quercus lobata</i> Née (Fagaceae). G3: Genes, Genomes, Genetics, 2016, 6, 3485-3495.	0.8	95
36	Dry-washes determine gene flow and genetic diversity in a common desert shrub. Landscape Ecology, 2016, 31, 2215-2229.	1.9	6

VictoriaÂL Sork

#	Article	IF	CITATIONS
37	Evolutionary lessons from California plant phylogeography. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8064-8071.	3.3	32
38	Association of genetic and phenotypic variability with geography and climate in three southern California oaks. American Journal of Botany, 2016, 103, 73-85.	0.8	44
39	Association of transcriptome-wide sequence variation with climate gradients in valley oak (Quercus) Tj ETQq1 1	0.784314	rgǥŢ /Overlo
40	Landscape genomic analysis of candidate genes for climate adaptation in a California endemic oak, <i>Quercus lobata</i> . American Journal of Botany, 2016, 103, 33-46.	0.8	93
41	Gene flow and natural selection shape spatial patterns of genes in tree populations: implications for evolutionary processes and applications. Evolutionary Applications, 2016, 9, 291-310.	1.5	54
42	Evolutionary and demographic history of the Californian scrub white oak species complex: an integrative approach. Molecular Ecology, 2015, 24, 6188-6208.	2.0	50
43	Genomeâ€wide signature of local adaptation linked to variable <scp>C</scp> p <scp>G</scp> methylation in oak populations. Molecular Ecology, 2015, 24, 3823-3830.	2.0	107
44	Impact of asymmetric male and female gamete dispersal on allelic diversity and spatial genetic structure in valley oak (Quercus lobata Née). Evolutionary Ecology, 2015, 29, 927-945.	0.5	25
45	Climatically stable landscapes predict patterns of genetic structure and admixture in the Californian canyon live oak. Journal of Biogeography, 2015, 42, 328-338.	1.4	74
46	Evolutionary insights from de novo transcriptome assembly and SNP discovery in California white oaks. BMC Genomics, 2015, 16, 552.	1.2	31
47	Isolation and Characterization of Polymorphic Microsatellite Loci in Spondias radlkoferi (Anacardiaceae). Applications in Plant Sciences, 2014, 2, 1400079.	0.8	3
48	Phylogeography of <i><scp>R</scp>amalina menziesii</i> , a widely distributed lichenâ€forming fungus in western <scp>N</scp> orth <scp>A</scp> merica. Molecular Ecology, 2014, 23, 2326-2339.	2.0	32
49	Influence of climatic niche suitability and geographical overlap on hybridization patterns among southern Californian oaks. Journal of Biogeography, 2014, 41, 1895-1908.	1.4	50
50	Ecological specialization in <i>Trebouxia</i> (Trebouxiophyceae) photobionts of <i>Ramalina menziesii</i> (Ramalinaceae) across six rangeâ€covering ecoregions of western North America. American Journal of Botany, 2014, 101, 1127-1140.	0.8	55
51	Efecto de la reproducción clonal en la estructura genética de Pentaclethra macroloba (Fabaceae:) Tj ETQq1 1	0.784314 0.1	rgBT /Overl
52	Influence of late <scp>Q</scp> uaternary climate change on present patterns of genetic variation in valley oak, <i><scp>Q</scp>uercus lobata</i> Née. Molecular Ecology, 2013, 22, 3598-3612.	2.0	127
53	A road map for molecular ecology. Molecular Ecology, 2013, 22, 2605-2626.	2.0	100
54	Phenotypic plasticity and differentiation in fitnessâ€related traits in invasive populations of the Mediterranean forb <i>Centaurea melitensis</i> (Asteraceae). American Journal of Botany, 2013, 100, 2040-2051.	0.8	22

#	Article	IF	CITATIONS
55	Seedâ€mediated connectivity among fragmented populations of <i>Quercus castanea</i> (Fagaceae) in a Mexican landscape. American Journal of Botany, 2013, 100, 1663-1671.	0.8	36
56	Using Seedling and Pericarp Tissues to Determine Maternal Parentage of Dispersed Valley Oak Recruits. Journal of Heredity, 2012, 103, 250-259.	1.0	17
57	Use of Alpha, Beta, and Gamma Diversity Measures to Characterize Seed Dispersal by Animals. American Naturalist, 2012, 180, 719-732.	1.0	27
58	Influence of environmental heterogeneity on genetic diversity and structure in an endemic southern Californian oak. Molecular Ecology, 2012, 21, 3210-3223.	2.0	113
59	Effects of habitat fragmentation on pollen flow and genetic diversity of the endangered tropical tree Swietenia humilis (Meliaceae). Biological Conservation, 2011, 144, 3082-3088.	1.9	44
60	Trade-offs between vegetative growth and acorn production in Quercus lobata during a mast year: the relevance of crop size and hierarchical level within the canopy. Oecologia, 2011, 166, 101-110.	0.9	44
61	Foraging patterns of acorn woodpeckers (Melanerpes formicivorus) on valley oak (Quercus lobata) Tj ETQq1 1 0	.784314 r 0.9	gBT_/Overloc
62	Influence of acorn woodpecker social behaviour on transport of coast live oak (<i>Quercus) Tj ETQq0 0 0 rgBT /(</i>	Overlock 1 1.9	0 Tf 50 462 1 27
63	Destination-based seed dispersal homogenizes genetic structure of a tropical palm. Molecular Ecology, 2010, 19, 1745-1753.	2.0	60
64	Gene movement and genetic association with regional climate gradients in California valley oak (<i>Quercus lobata</i> Née) in the face of climate change. Molecular Ecology, 2010, 19, 3806-3823.	2.0	208
65	Contributions of landscape genetics – approaches, insights, and future potential. Molecular Ecology, 2010, 19, 3489-3495.	2.0	110
66	Identity and genetic structure of the photobiont of the epiphytic lichen <i>Ramalina menziesii</i> on three oak species in southern California. American Journal of Botany, 2010, 97, 821-830.	0.8	73
67	Effect of patch size and isolation on mating patterns and seed production in an urban population of Chinese pine (Pinus tabulaeformis Carr.). Forest Ecology and Management, 2010, 260, 965-974.	1.4	24
68	Relative contribution of contemporary pollen and seed dispersal to the effective parental size of seedling population of California valley oak (<i>Quercus lobata</i> , Née). Molecular Ecology, 2009, 18, 3967-3979.	2.0	67
69	Short distance pollen movement in a wind-pollinated tree, Quercus lobata (Fagaceae). Forest Ecology and Management, 2009, 258, 735-744.	1.4	64
70	Conserving the evolutionary potential of California valley oak (<i>Quercus lobata </i> Née): a multivariate genetic approach to conservation planning. Molecular Ecology, 2008, 17, 139-156.	2.0	71
71	Local genetic structure in a North American epiphytic lichen, Ramalina menziesii (Ramalinaceae). American Journal of Botany, 2008, 95, 568-576.	0.8	39
72	Genetic Variation in Fragmented Forest Stands of the Andean Oak Quercus humboldtii Bonpl. (Fagaceae). Biotropica, 2007, 39, 72-78.	0.8	30

#	Article	IF	CITATIONS
73	Hunting of Mammals Reduces Seed Removal and Dispersal of the Afrotropical TreeAntrocaryon klaineanum(Anacardiaceae). Biotropica, 2007, 39, 340-347.	0.8	99
74	Contrasting patterns of historical colonization in white oaks (Quercusspp.) in California and Europe. Molecular Ecology, 2006, 15, 4085-4093.	2.0	89
75	Genetic analysis of landscape connectivity in tree populations. Landscape Ecology, 2006, 21, 821-836.	1.9	297
76	Mating Patterns of Black Oak Quercus velutina (Fagaceae) in a Missouri Oak-Hickory Forest. Journal of Heredity, 2006, 97, 451-455.	1.0	20
77	A novel approach to an old problem: tracking dispersed seeds. Molecular Ecology, 2005, 14, 3585-3595.	2.0	92
78	A twoâ€generation analysis of pollen pool genetic structure in flowering dogwood, <i>Cornus florida</i> (Cornaceae), in the Missouri Ozarks. American Journal of Botany, 2005, 92, 262-271.	0.8	50
79	Gene flow and fine-scale genetic structure in a wind-pollinated tree species, Quercus lobata (Fagaceaee). American Journal of Botany, 2005, 92, 252-261.	0.8	70
80	Using genetic markers to estimate the pollen dispersal curve. Molecular Ecology, 2004, 13, 937-954.	2.0	266
81	Within-population spatial synchrony in mast seeding of North American oaks. Oikos, 2004, 104, 156-164.	1.2	92
82	Measuring pollen flow in forest trees: an exposition of alternative approaches. Forest Ecology and Management, 2004, 197, 21-38.	1.4	188
83	Measuring mast seeding behavior: relationships among population variation, individual variation and synchrony. Journal of Theoretical Biology, 2003, 224, 107-114.	0.8	43
84	Dissecting components of population-level variation in seed production and the evolution of masting behavior. Oikos, 2003, 102, 581-591.	1.2	134
85	Fitness Consequences of Herbivory on Quercus alba. American Midland Naturalist, 2003, 150, 246-253.	0.2	23
86	Lianas and Trees in a Liana Forest of Amazonian Bolivia1. Biotropica, 2001, 33, 34-47.	0.8	156
87	TWO-GENERATION ANALYSIS OF POLLEN FLOW ACROSS A LANDSCAPE. I. MALE GAMETE HETEROGENEITY AMONG FEMALES. Evolution; International Journal of Organic Evolution, 2001, 55, 260-271.	1.1	256
88	EVALUATING THE EFFECTS OF ECOSYSTEM MANAGEMENT: A CASE STUDY IN A MISSOURI OZARK FOREST. , 2001, 11, 1667-1679.		27
89	ASSOCIATION BETWEEN ENVIRONMENTAL AND GENETIC HETEROGENEITY IN FOREST TREE POPULATIONS. Ecology, 2001, 82, 2012-2021.	1.5	59
90	Lianas and Trees in a Liana Forest of Amazonian Bolivia1. Biotropica, 2001, 33, 34.	0.8	27

#	Article	IF	CITATIONS
91	Association between Environmental and Genetic Heterogeneity in Forest Tree Populations. Ecology, 2001, 82, 2012.	1.5	4
92	Population Density as a Predictor of Genetic Variation for Woody Plant Species. Conservation Biology, 1999, 13, 1079-1087.	2.4	31
93	Landscape approaches to historical and contemporary gene flow in plants. Trends in Ecology and Evolution, 1999, 14, 219-224.	4.2	337
94	Population and genetic structure of the West African rain forest liana Ancistrocladus korupensis (Ancistrocladaceae). American Journal of Botany, 1997, 84, 1078-1091.	0.8	34
95	The impact of weed diversity on insect population dynamics and crop yield in collards, Brassica oleraceae (Brassicaceae). Oecologia, 1997, 111, 233-240.	0.9	70
96	Spatial genetic structure of a tropical understory shrub, <i>PSYCHOTRIA OFFICINALIS</i> (RuBIACEAE). American Journal of Botany, 1995, 82, 1420-1425.	0.8	823
97	Spatial Genetic Structure of a Tropical Understory Shrub, Psychotria officinalis (Rubiaceae). American Journal of Botany, 1995, 82, 1420.	0.8	573
98	Effect of water availability on the phenotypic expression of herbivore resistance in northern red oak seedlings (Quercus rubra L.). Oecologia, 1994, 100, 309-315.	0.9	15
99	Ecology of Mast-Fruiting in Three Species of North American Deciduous Oaks. Ecology, 1993, 74, 528-541.	1.5	400
100	Evidence for Local Adaptation in Closely Adjacent Subpopulations of Northern Red Oak (Quercus) Tj ETQq0 0 0 r	gBT /Over 1.0	lock 10 Tf 50 149
101	FITNESS CONSEQUENCES OF MIXEDâ€ÐONOR POLLEN LOADS IN THE ANNUAL LEGUME CHAMAECRISTA FASCICULATA. American Journal of Botany, 1992, 79, 508-515.	0.8	28
102	The Ecology of Terrestrial Plant- Animal Interactions. Ecology, 1988, 69, 2035-2035.	1.5	0
103	EFFECT OF CROSSING DISTANCE AND MALE PARENT ON IN VIVO POLLEN TUBE GROWTH IN CHAMAECRISTA FASCICULATA. American Journal of Botany, 1988, 75, 1898-1903.	0.8	51
104	Effects of Predation and Light on Seedling Establishment in Gustavia Superba. Ecology, 1987, 68, 1341-1350.	1.5	161
105	Examination of Seed Dispersal and Survival in Red Oak, Quercus Rubra (Fagaceae), Using Metal-Tagged Acorns. Ecology, 1984, 65, 1020-1022.	1.5	115
106	Utilization of red oak acorns in non-bumper crop year. Oecologia, 1983, 59, 49-53.	0.9	23
107	Mammalian Seed Dispersal of Pignut Hickory during Three Fruiting Seasons. Ecology, 1983, 64, 1049-1056.	1.5	43
108	Phenological Properties of Wind- and Insect-Pollinated Prairie Plants. Ecology, 1981, 62, 49-56.	1.5	102

#	Article	IF	CITATIONS
109	Dispersal of sweet pignut hickory in a year of low fruit production, and the influence of predation by a curculionid beetle. Oecologia, 1977, 28, 289-299.	0.9	36