Victoria L Sork

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8462770/publications.pdf

Version: 2024-02-01

46771 46984 8,750 109 47 89 citations h-index g-index papers 115 115 115 7810 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Spatial genetic structure of a tropical understory shrub, <i>PSYCHOTRIA OFFICINALIS</i> (RuBIACEAE). American Journal of Botany, 1995, 82, 1420-1425.	0.8	823
2	Spatial Genetic Structure of a Tropical Understory Shrub, Psychotria officinalis (Rubiaceae). American Journal of Botany, 1995, 82, 1420.	0.8	573
3	Ecology of Mast-Fruiting in Three Species of North American Deciduous Oaks. Ecology, 1993, 74, 528-541.	1.5	400
4	Landscape approaches to historical and contemporary gene flow in plants. Trends in Ecology and Evolution, 1999, 14, 219-224.	4.2	337
5	Genetic analysis of landscape connectivity in tree populations. Landscape Ecology, 2006, 21, 821-836.	1.9	297
6	Using genetic markers to estimate the pollen dispersal curve. Molecular Ecology, 2004, 13, 937-954.	2.0	266
7	TWO-GENERATION ANALYSIS OF POLLEN FLOW ACROSS A LANDSCAPE. I. MALE GAMETE HETEROGENEITY AMONG FEMALES. Evolution; International Journal of Organic Evolution, 2001, 55, 260-271.	1.1	256
8	Epigenetics in ecology and evolution: what we know andÂwhat we need to know. Molecular Ecology, 2016, 25, 1631-1638.	2.0	229
9	Gene movement and genetic association with regional climate gradients in California valley oak (<i>Quercus lobata</i> Née) in the face of climate change. Molecular Ecology, 2010, 19, 3806-3823.	2.0	208
10	Measuring pollen flow in forest trees: an exposition of alternative approaches. Forest Ecology and Management, 2004, 197, 21-38.	1.4	188
11	Genomic landscape of the global oak phylogeny. New Phytologist, 2020, 226, 1198-1212.	3.5	186
12	Effects of Predation and Light on Seedling Establishment in Gustavia Superba. Ecology, 1987, 68, 1341-1350.	1.5	161
13	Speciesâ€wide patterns of <scp>DNA</scp> methylation variation in <i>Quercus lobata</i> and their association with climate gradients. Molecular Ecology, 2016, 25, 1665-1680.	2.0	159
14	Lianas and Trees in a Liana Forest of Amazonian Bolivia1. Biotropica, 2001, 33, 34-47.	0.8	156
15	Evidence for Local Adaptation in Closely Adjacent Subpopulations of Northern Red Oak (Quercus) Tj ETQq $1\ 1$	0.784314 rgl	3T/Qverlock 149
16	Dissecting components of population-level variation in seed production and the evolution of masting behavior. Oikos, 2003, 102, 581-591.	1.2	134
17	Influence of late <scp>Q</scp> uaternary climate change on present patterns of genetic variation in valley oak, <i><scp>Q</scp>uercus lobata</i> Née. Molecular Ecology, 2013, 22, 3598-3612.	2.0	127
18	Genomic Quantitative Genetics to Study Evolution in the Wild. Trends in Ecology and Evolution, 2017, 32, 897-908.	4.2	127

#	Article	IF	CITATIONS
19	Examination of Seed Dispersal and Survival in Red Oak, Quercus Rubra (Fagaceae), Using Metal-Tagged Acorns. Ecology, 1984, 65, 1020-1022.	1.5	115
20	Influence of environmental heterogeneity on genetic diversity and structure in an endemic southern Californian oak. Molecular Ecology, 2012, 21, 3210-3223.	2.0	113
21	Contributions of landscape genetics – approaches, insights, and future potential. Molecular Ecology, 2010, 19, 3489-3495.	2.0	110
22	Genomeâ€wide signature of local adaptation linked to variable <scp>C</scp> p <scp>G</scp> methylation in oak populations. Molecular Ecology, 2015, 24, 3823-3830.	2.0	107
23	Phenological Properties of Wind- and Insect-Pollinated Prairie Plants. Ecology, 1981, 62, 49-56.	1.5	102
24	A road map for molecular ecology. Molecular Ecology, 2013, 22, 2605-2626.	2.0	100
25	Hunting of Mammals Reduces Seed Removal and Dispersal of the Afrotropical TreeAntrocaryon klaineanum(Anacardiaceae). Biotropica, 2007, 39, 340-347.	0.8	99
26	First Draft Assembly and Annotation of the Genome of a California Endemic Oak <i>Quercus lobata</i> Née (Fagaceae). G3: Genes, Genomes, Genetics, 2016, 6, 3485-3495.	0.8	95
27	Landscape genomic analysis of candidate genes for climate adaptation in a California endemic oak, <i>Quercus lobata</i> . American Journal of Botany, 2016, 103, 33-46.	0.8	93
28	Within-population spatial synchrony in mast seeding of North American oaks. Oikos, 2004, 104, 156-164.	1.2	92
29	A novel approach to an old problem: tracking dispersed seeds. Molecular Ecology, 2005, 14, 3585-3595.	2.0	92
30	Contrasting patterns of historical colonization in white oaks (Quercusspp.) in California and Europe. Molecular Ecology, 2006, 15, 4085-4093.	2.0	89
31	Adaptational lag to temperature in valley oak (<i>Quercus lobata</i>) can be mitigated by genome-informed assisted gene flow. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25179-25185.	3.3	89
32	Genomic Studies of Local Adaptation in Natural Plant Populations. Journal of Heredity, 2017, 109, 3-15.	1.0	83
33	Climatically stable landscapes predict patterns of genetic structure and admixture in the Californian canyon live oak. Journal of Biogeography, 2015, 42, 328-338.	1.4	74
34	Identity and genetic structure of the photobiont of the epiphytic lichen <i>Ramalina menziesii</i> on three oak species in southern California. American Journal of Botany, 2010, 97, 821-830.	0.8	73
35	Conserving the evolutionary potential of California valley oak ($<$ i $>$ Quercus lobata $<$ /i $>$ Née): a multivariate genetic approach to conservation planning. Molecular Ecology, 2008, 17, 139-156.	2.0	71
36	The impact of weed diversity on insect population dynamics and crop yield in collards, Brassica oleraceae (Brassicaceae). Oecologia, 1997, 111, 233-240.	0.9	70

#	Article	IF	CITATIONS
37	Gene flow and fine-scale genetic structure in a wind-pollinated tree species, Quercus lobata (Fagaceaee). American Journal of Botany, 2005, 92, 252-261.	0.8	70
38	Relative contribution of contemporary pollen and seed dispersal to the effective parental size of seedling population of California valley oak (<i>Quercus lobata</i> , Née). Molecular Ecology, 2009, 18, 3967-3979.	2.0	67
39	Short distance pollen movement in a wind-pollinated tree, Quercus lobata (Fagaceae). Forest Ecology and Management, 2009, 258, 735-744.	1.4	64
40	Destination-based seed dispersal homogenizes genetic structure of a tropical palm. Molecular Ecology, 2010, 19, 1745-1753.	2.0	60
41	ASSOCIATION BETWEEN ENVIRONMENTAL AND GENETIC HETEROGENEITY IN FOREST TREE POPULATIONS. Ecology, 2001, 82, 2012-2021.	1.5	59
42	Landscape Genomics to Enable Conservation Actions: The California Conservation Genomics Project. Journal of Heredity, 2022, 113, 577-588.	1.0	59
43	Genomic data reveal cryptic lineage diversification and introgression in Californian golden cup oaks (section <i>Protobalanus</i>). New Phytologist, 2018, 218, 804-818.	3.5	56
44	Ecological specialization in <i>Trebouxia</i> (Trebouxiophyceae) photobionts of <i>Ramalina menziesii</i> (Ramalinaceae) across six rangeâ€covering ecoregions of western North America. American Journal of Botany, 2014, 101, 1127-1140.	0.8	55
45	Gene flow and natural selection shape spatial patterns of genes in tree populations: implications for evolutionary processes and applications. Evolutionary Applications, 2016, 9, 291-310.	1.5	54
46	Landscape genomics provides evidence of climateâ€associated genetic variation in Mexican populations of <i>Quercus rugosa</i> . Evolutionary Applications, 2018, 11, 1842-1858.	1.5	54
47	EFFECT OF CROSSING DISTANCE AND MALE PARENT ON IN VIVO POLLEN TUBE GROWTH IN CHAMAECRISTA FASCICULATA. American Journal of Botany, 1988, 75, 1898-1903.	0.8	51
48	A twoâ€generation analysis of pollen pool genetic structure in flowering dogwood, <i>Cornus florida</i> (Cornaceae), in the Missouri Ozarks. American Journal of Botany, 2005, 92, 262-271.	0.8	50
49	Influence of climatic niche suitability and geographical overlap on hybridization patterns among southern Californian oaks. Journal of Biogeography, 2014, 41, 1895-1908.	1.4	50
50	Evolutionary and demographic history of the Californian scrub white oak species complex: an integrative approach. Molecular Ecology, 2015, 24, 6188-6208.	2.0	50
51	Phylogenomic inferences from reference-mapped and de novo assembled short-read sequence data using RADseq sequencing of California white oaks (<i>Quercus</i> section <i>Quercus</i>). Genome, 2017, 60, 743-755.	0.9	50
52	Applying landscape genomic tools to forest management and restoration of Hawaiian koa (<i>Acacia) Tj ETQq0</i>	0 0 rgBT /	Overlock 10 T
53	Effects of habitat fragmentation on pollen flow and genetic diversity of the endangered tropical tree Swietenia humilis (Meliaceae). Biological Conservation, 2011, 144, 3082-3088.	1.9	44
54	Trade-offs between vegetative growth and acorn production in Quercus lobata during a mast year: the relevance of crop size and hierarchical level within the canopy. Oecologia, 2011, 166, 101-110.	0.9	44

#	Article	IF	CITATIONS
55	Association of genetic and phenotypic variability with geography and climate in three southern California oaks. American Journal of Botany, 2016, 103, 73-85.	0.8	44
56	Mammalian Seed Dispersal of Pignut Hickory during Three Fruiting Seasons. Ecology, 1983, 64, 1049-1056.	1.5	43
57	Measuring mast seeding behavior: relationships among population variation, individual variation and synchrony. Journal of Theoretical Biology, 2003, 224, 107-114.	0.8	43
58	Creating inclusive classrooms by engaging STEM faculty in culturally responsive teaching workshops. International Journal of STEM Education, 2020, 7, 32.	2.7	41
59	Local genetic structure in a North American epiphytic lichen, Ramalina menziesii (Ramalinaceae). American Journal of Botany, 2008, 95, 568-576.	0.8	39
60	Whole-transcriptome response to water stress in a California endemic oak, <i>Quercus lobata</i> Tree Physiology, 2017, 37, 632-644.	1.4	37
61	Impacts of humanâ€induced environmental disturbances on hybridization between two ecologically differentiated Californian oak species. New Phytologist, 2017, 213, 942-955.	3.5	37
62	Dispersal of sweet pignut hickory in a year of low fruit production, and the influence of predation by a curculionid beetle. Oecologia, 1977, 28, 289-299.	0.9	36
63	Seedâ€mediated connectivity among fragmented populations of <i>Quercus castanea</i> (Fagaceae) in a Mexican landscape. American Journal of Botany, 2013, 100, 1663-1671.	0.8	36
64	Population and genetic structure of the West African rain forest liana Ancistrocladus korupensis (Ancistrocladaceae). American Journal of Botany, 1997, 84, 1078-1091.	0.8	34
65	RADseq data reveal ancient, but not pervasive, introgression between Californian tree and scrub oak species (<i>Quercus</i> sect. <i>Quercus</i> Fagaceae). Molecular Ecology, 2018, 27, 4556-4571.	2.0	33
66	Phylogeography of <i><scp>R</scp>amalina menziesii</i> , a widely distributed lichenâ€forming fungus in western <scp>N</scp> orth <scp>A</scp> merica. Molecular Ecology, 2014, 23, 2326-2339.	2.0	32
67	Evolutionary lessons from California plant phylogeography. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8064-8071.	3.3	32
68	Population Density as a Predictor of Genetic Variation for Woody Plant Species. Conservation Biology, 1999, 13, 1079-1087.	2.4	31
69	Evolutionary insights from de novo transcriptome assembly and SNP discovery in California white oaks. BMC Genomics, 2015, 16, 552.	1.2	31
70	Association of transcriptome-wide sequence variation with climate gradients in valley oak (Quercus) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf 5
71	Genetic Variation in Fragmented Forest Stands of the Andean Oak Quercus humboldtii Bonpl. (Fagaceae). Biotropica, 2007, 39, 72-78.	0.8	30
72	Landscape genomics of <i>Quercus lobata</i> reveals genes involved in local climate adaptation at multiple spatial scales. Molecular Ecology, 2021, 30, 406-423.	2.0	30

#	Article	IF	Citations
73	High-quality genome and methylomes illustrate features underlying evolutionary success of oaks. Nature Communications, 2022, 13, 2047.	5.8	30
74	FITNESS CONSEQUENCES OF MIXEDâ€DONOR POLLEN LOADS IN THE ANNUAL LEGUME CHAMAECRISTA FASCICULATA. American Journal of Botany, 1992, 79, 508-515.	0.8	28
75	EVALUATING THE EFFECTS OF ECOSYSTEM MANAGEMENT: A CASE STUDY IN A MISSOURI OZARK FOREST. , 2001, 11, 1667-1679.		27
76	Lianas and Trees in a Liana Forest of Amazonian Bolivia 1. Biotropica, 2001, 33, 34.	0.8	27
77	Influence of acorn woodpecker social behaviour on transport of coast live oak (<i>Quercus) Tj ETQq1 1 0.784314</i>	rggT/Ove	rlock 10 Tf
78	Use of Alpha, Beta, and Gamma Diversity Measures to Characterize Seed Dispersal by Animals. American Naturalist, 2012, 180, 719-732.	1.0	27
79	Tropical insect diversity: evidence of greater host specialization in seedâ€feeding weevils. Ecology, 2017, 98, 2180-2190.	1.5	26
80	Assessment of shared alleles in drought-associated candidate genes among southern California white oak species (Quercus sect. Quercus). BMC Genetics, 2018, 19, 88.	2.7	26
81	The relative contributions of seed and pollen dispersal to gene flow and genetic diversity in seedlings of a tropical palm. Molecular Ecology, 2018, 27, 3159-3173.	2.0	26
82	Impact of asymmetric male and female gamete dispersal on allelic diversity and spatial genetic structure in valley oak (Quercus lobata Née). Evolutionary Ecology, 2015, 29, 927-945.	0.5	25
83	Genetic evidence for centralâ€marginal hypothesis in a Cenozoic relict tree species across its distribution in China. Journal of Biogeography, 2016, 43, 2173-2185.	1.4	25
84	Effect of patch size and isolation on mating patterns and seed production in an urban population of Chinese pine (Pinus tabulaeformis Carr.). Forest Ecology and Management, 2010, 260, 965-974.	1.4	24
85	Utilization of red oak acorns in non-bumper crop year. Oecologia, 1983, 59, 49-53.	0.9	23
86	Fitness Consequences of Herbivory on Quercus alba. American Midland Naturalist, 2003, 150, 246-253.	0.2	23
87	Phenotypic plasticity and differentiation in fitnessâ€related traits in invasive populations of the Mediterranean forb <i>Centaurea melitensis</i> (Asteraceae). American Journal of Botany, 2013, 100, 2040-2051.	0.8	22
88	Mating Patterns of Black Oak Quercus velutina (Fagaceae) in a Missouri Oak-Hickory Forest. Journal of Heredity, 2006, 97, 451-455.	1.0	20
89	Foraging patterns of acorn woodpeckers (Melanerpes formicivorus) on valley oak (Quercus lobata) Tj ETQq1 1 0.7	84314 rgE 0.9	BT _g Overlo <mark>c</mark>
90	Seedling response to water stress in valley oak (<i>Quercus lobata</i>) is shaped by different gene networks across populations. Molecular Ecology, 2019, 28, 5248-5264.	2.0	19

#	Article	IF	CITATIONS
91	Sharing and reporting benefits from biodiversity research. Molecular Ecology, 2021, 30, 1103-1107.	2.0	19
92	Using Seedling and Pericarp Tissues to Determine Maternal Parentage of Dispersed Valley Oak Recruits. Journal of Heredity, 2012, 103, 250-259.	1.0	17
93	The roles of geography and environment in divergence within and between two closely related plant species inhabiting an islandâ€like habitat. Journal of Biogeography, 2018, 45, 381-393.	1.4	16
94	Effect of water availability on the phenotypic expression of herbivore resistance in northern red oak seedlings (Quercus rubra L.). Oecologia, 1994, 100, 309-315.	0.9	15
95	Comparison of phylogeographical structures of a lichenâ€forming fungus and its green algal photobiont in western North America. Journal of Biogeography, 2016, 43, 932-943.	1.4	12
96	Diversity in insect seed parasite guilds at large geographical scale: the roles of host specificity and spatial distance. Journal of Biogeography, 2016, 43, 1620-1630.	1.4	11
97	Experimental DNA Demethylation Associates with Changes in Growth and Gene Expression of Oak Tree Seedlings. G3: Genes, Genomes, Genetics, 2020, 10, 1019-1028.	0.8	11
98	Efecto de la reproducción clonal en la estructura genética de Pentaclethra macroloba (Fabaceae:) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
99	Genome-Wide Variation in DNA Methylation Predicts Variation in Leaf Traits in an Ecosystem-Foundational Oak Species. Forests, 2021, 12, 569.	0.9	8
100	Influence of a climatic gradient on genetic exchange between two oak species. American Journal of Botany, 2019, 106, 864-878.	0.8	7
101	Influence of Pliocene and Pleistocene climates on hybridization patterns between two closely related oak species in China. Annals of Botany, 2022, 129, 231-245.	1.4	7
102	Dry-washes determine gene flow and genetic diversity in a common desert shrub. Landscape Ecology, 2016, 31, 2215-2229.	1.9	6
103	Association between Environmental and Genetic Heterogeneity in Forest Tree Populations. Ecology, 2001, 82, 2012.	1.5	4
104	VARIATION IN LEAF SHAPE IN A QUERCUS LOBATA COMMON GARDEN: TESTS FOR ADAPTATION TO CLIMATE AND PHYSIOLOGICAL CONSEQUENCES. Madroñ0, 2020, 67, .	0.3	4
105	TIMING OF BUD BURST IS ASSOCIATED WITH CLIMATE OF MATERNAL ORIGIN IN QUERCUS LOBATA PROGENY IN A COMMON GARDEN. Madroño, 2021, 68, .	0.3	4
106	Isolation and Characterization of Polymorphic Microsatellite Loci in Spondias radlkoferi (Anacardiaceae). Applications in Plant Sciences, 2014, 2, 1400079.	0.8	3
107	Historical interactions are predicted to be disrupted under future climate change: The case of lace lichen and valley oak. Journal of Biogeography, 2019, 46, 19-29.	1.4	3
108	Ancient Introgression Between Distantly Related White Oaks (<i>Quercus</i> Shows Evidence of Climate-Associated Asymmetric Gene Exchange. Journal of Heredity, 2021, 112, 663-670.	1.0	3

VictoriaÂL Sork

#	Article	IF	CITATIONS
109	The Ecology of Terrestrial Plant- Animal Interactions. Ecology, 1988, 69, 2035-2035.	1.5	0