Daniel L Marks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8462085/publications.pdf Version: 2024-02-01

DANIEL MADES

#	Article	IF	CITATIONS
1	Critical changes in hypothalamic gene networks in response to pancreatic cancer as found by single-cell RNA sequencing. Molecular Metabolism, 2022, 58, 101441.	3.0	6
2	Validation of automated body composition analysis using diagnostic computed tomography imaging in patients with pancreatic cancer. American Journal of Surgery, 2022, 224, 742-746.	0.9	2
3	Proteomic analysis distinguishes extracellular vesicles produced by cancerous versus healthy pancreatic organoids. Scientific Reports, 2022, 12, 3556.	1.6	16
4	Lipocalin 2 mediates appetite suppression during pancreatic cancer cachexia. Nature Communications, 2021, 12, 2057.	5.8	48
5	Constructing and programming a cost-effective murine running wheel with digital revolution counter. Lab Animal, 2021, 50, 202-204.	0.2	4
6	Physiologic and molecular characterization of a novel murine model of metastatic head and neck cancer cachexia. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 1312-1332.	2.9	10
7	Neural Mechanisms of Cancer Cachexia. Cancers, 2021, 13, 3990.	1.7	20
8	Chronic cerebral lipocalin 2 exposure elicits hippocampal neuronal dysfunction and cognitive impairment. Brain, Behavior, and Immunity, 2021, 97, 102-118.	2.0	25
9	Diverging metabolic programmes and behaviours during states of starvation, protein malnutrition, and cachexia. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 1429-1446.	2.9	29
10	Multidisciplinary standards of care and recent progress in pancreatic ductal adenocarcinoma. Ca-A Cancer Journal for Clinicians, 2020, 70, 375-403.	157.7	237
11	Association of Sarcopenia With Oncologic Outcomes of Primary Surgery or Definitive Radiotherapy Among Patients With Localized Oropharyngeal Squamous Cell Carcinoma. JAMA Otolaryngology - Head and Neck Surgery, 2020, 146, 714.	1.2	22
12	Microglia in the hypothalamus respond to tumorâ€derived factors and are protective against cachexia during pancreatic cancer. Glia, 2020, 68, 1479-1494.	2.5	17
13	Melanocortin-4 receptor antagonist TCMCB07 ameliorates cancer- and chronic kidney disease–associated cachexia. Journal of Clinical Investigation, 2020, 130, 4921-4934.	3.9	22
14	Circulating myeloid cells invade the central nervous system to mediate cachexia during pancreatic cancer. ELife, 2020, 9, .	2.8	34
15	Leptin increases sympathetic nerve activity via induction of its own receptor in the paraventricular nucleus. ELife, 2020, 9, .	2.8	26
16	Effects on Mouse Food Consumption After Exposure to Bedding from Sick Mice or Healthy Mice. Journal of the American Association for Laboratory Animal Science, 2020, 59, 687-694.	0.6	0
17	Effects on Mouse Food Consumption After Exposure to Bedding from Sick Mice or Healthy Mice. Journal of the American Association for Laboratory Animal Science, 2020, 59, 687-694.	0.6	3
18	Extracellular vesicles impose quiescence on residual hematopoietic stem cells in the leukemic niche. EMBO Reports, 2019, 20, e47546.	2.0	38

#	Article	IF	CITATIONS
19	The TLR7/8 agonist R848 remodels tumor and host responses to promote survival in pancreatic cancer. Nature Communications, 2019, 10, 4682.	5.8	123
20	Persistent Toll-like receptor 7 stimulation induces behavioral and molecular innate immune tolerance. Brain, Behavior, and Immunity, 2019, 82, 338-353.	2.0	29
21	MyD88 signalling is critical in the development of pancreatic cancer cachexia. Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 378-390.	2.9	45
22	Association Between Sarcopenia and Mortality in Patients Undergoing Surgical Excision of Head and Neck Cancer. JAMA Otolaryngology - Head and Neck Surgery, 2019, 145, 647.	1.2	67
23	Pretreatment Cancer-Related Cognitive Impairment—Mechanisms and Outlook. Cancers, 2019, 11, 687.	1.7	56
24	An Insulin-Responsive Sensor in the SIRT1 Disordered Region Binds DBC1 and PACS-2 to Control Enzyme Activity. Molecular Cell, 2018, 72, 985-998.e7.	4.5	33
25	Melanocortinâ€3 Receptors Expressed on Agoutiâ€Related Peptide Neurons Inhibit Feeding Behavior in Female Mice. Obesity, 2018, 26, 1849-1855.	1.5	5
26	Increasing lean muscle mass in mice via nanoparticle-mediated hepatic delivery of follistatin mRNA. Theranostics, 2018, 8, 5276-5288.	4.6	32
27	TRIF is a key inflammatory mediator of acute sickness behavior and cancer cachexia. Brain, Behavior, and Immunity, 2018, 73, 364-374.	2.0	32
28	A TLR/AKT/FoxO3 immune tolerance–like pathway disrupts the repair capacity of oligodendrocyte progenitors. Journal of Clinical Investigation, 2018, 128, 2025-2041.	3.9	38
29	Establishment and characterization of a novel murine model of pancreatic cancer cachexia. Journal of Cachexia, Sarcopenia and Muscle, 2017, 8, 824-838.	2.9	99
30	Amplification and propagation of interleukin-1β signaling by murine brain endothelial and glial cells. Journal of Neuroinflammation, 2017, 14, 133.	3.1	44
31	Interleukin-1β signaling in fenestrated capillaries is sufficient to trigger sickness responses in mice. Journal of Neuroinflammation, 2017, 14, 219.	3.1	24
32	A distinct brain pathway links viral RNA exposure to sickness behavior. Scientific Reports, 2016, 6, 29885.	1.6	31
33	Hypothalamic Dysfunction and Multiple Sclerosis: Implications for Fatigue and Weight Dysregulation. Current Neurology and Neuroscience Reports, 2016, 16, 98.	2.0	29
34	Melanocortin-3 receptors in the limbic system mediate feeding-related motivational responses during weight loss. Molecular Metabolism, 2016, 5, 566-579.	3.0	21
35	RHEB1 expression in embryonic and postnatal mouse. Histochemistry and Cell Biology, 2016, 145, 561-572.	0.8	2
36	The central role of hypothalamic inflammation in the acute illness response and cachexia. Seminars in Cell and Developmental Biology, 2016, 54, 42-52.	2.3	110

#	Article	IF	CITATIONS
37	Dexamethasone Chemotherapy Does Not Disrupt Orexin Signaling. PLoS ONE, 2016, 11, e0168731.	1.1	6
38	The regulation of muscle mass by endogenous glucocorticoids. Frontiers in Physiology, 2015, 6, 12.	1.3	169
39	Maternal high-fat diet and obesity compromise fetal hematopoiesis. Molecular Metabolism, 2015, 4, 25-38.	3.0	48
40	Mechanism of Protection by Soluble Epoxide Hydrolase Inhibition in Type 2 Diabetic Stroke. PLoS ONE, 2014, 9, e97529.	1.1	26
41	A role for orexin in cytotoxic chemotherapy-induced fatigue. Brain, Behavior, and Immunity, 2014, 37, 84-94.	2.0	47
42	Muscle Atrophy in Response to Cytotoxic Chemotherapy Is Dependent on Intact Glucocorticoid Signaling in Skeletal Muscle. PLoS ONE, 2014, 9, e106489.	1.1	71
43	Role of Soluble Epoxide Hydrolase in Exacerbation of Stroke by Streptozotocin-Induced Type 1 Diabetes Mellitus. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1650-1656.	2.4	41
44	Cancer―and endotoxinâ€induced cachexia require intact glucocorticoid signaling in skeletal muscle. FASEB Journal, 2013, 27, 3572-3582.	0.2	84
45	Hypothalamic signaling in anorexia induced by indispensable amino acid deficiency. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E1446-E1458.	1.8	24
46	Expression of myeloid differentiation factor 88 in neurons is not requisite for the induction of sickness behavior by interleukin-1β. Journal of Neuroinflammation, 2012, 9, 229.	3.1	26
47	Perinatal Exposure to a High-Fat Diet Is Associated with Reduced Hepatic Sympathetic Innervation in One-Year Old Male Japanese Macaques. PLoS ONE, 2012, 7, e48119.	1.1	31
48	Pâ€selectin genotype is associated with the development of cancer cachexia. EMBO Molecular Medicine, 2012, 4, 462-471.	3.3	39
49	Regulation of Lean Mass, Bone Mass, and Exercise Tolerance by the Central Melanocortin System. PLoS ONE, 2012, 7, e42183.	1.1	14
50	Hypothalamic regulation of muscle metabolism. Current Opinion in Clinical Nutrition and Metabolic Care, 2011, 14, 237-242.	1.3	15
51	Central nervous system inflammation induces muscle atrophy via activation of the hypothalamic–pituitary–adrenal axis. Journal of Experimental Medicine, 2011, 208, 2449-2463.	4.2	162
52	Genetic Dissection of the Functions of the Melanocortin-3 Receptor, a Seven-transmembrane G-protein-coupled Receptor, Suggests Roles for Central and Peripheral Receptors in Energy Homeostasis. Journal of Biological Chemistry, 2011, 286, 40771-40781.	1.6	53
53	Inflammation-Induced Lethargy Is Mediated by Suppression of Orexin Neuron Activity. Journal of Neuroscience, 2011, 31, 11376-11386.	1.7	114
54	Increased maternal fat consumption during pregnancy alters body composition in neonatal mice. American Journal of Physiology - Endocrinology and Metabolism, 2011, 301, E1243-E1253.	1.8	44

#	Article	IF	CITATIONS
55	Maternal High Fat Diet Is Associated with Decreased Plasma n–3 Fatty Acids and Fetal Hepatic Apoptosis in Nonhuman Primates. PLoS ONE, 2011, 6, e17261.	1.1	89
56	Pathophysiology and treatment of inflammatory anorexia in chronic disease. Journal of Cachexia, Sarcopenia and Muscle, 2010, 1, 135-145.	2.9	75
57	Arcuate Nucleus Proopiomelanocortin Neurons Mediate the Acute Anorectic Actions of Leukemia Inhibitory Factor via gp130. Endocrinology, 2010, 151, 606-616.	1.4	55
58	Genetic and pharmacologic blockade of central melanocortin signaling attenuates cardiac cachexia in rodent models of heart failure. Journal of Endocrinology, 2010, 206, 121-130.	1.2	43
59	Combined effects of ghrelin and higher food intake enhance skeletal muscle mitochondrial oxidative capacity and AKT phosphorylation in rats with chronic kidney disease. Kidney International, 2010, 77, 23-28.	2.6	57
60	Hypothalamic mechanisms in cachexia. Physiology and Behavior, 2010, 100, 478-489.	1.0	124
61	Administration of IL-1Î ² to the 4th ventricle causes anorexia that is blocked by agouti-related peptide and that coincides with activation of tyrosine-hydroxylase neurons in the nucleus of the solitary tract. Peptides, 2009, 30, 210-218.	1.2	37
62	Pharmacological and pharmacokinetic characterization of 2-piperazine-α-isopropyl benzylamine derivatives as melanocortin-4 receptor antagonists. Bioorganic and Medicinal Chemistry, 2008, 16, 5606-5618.	1.4	23
63	Cachexia: A new definition. Clinical Nutrition, 2008, 27, 793-799.	2.3	1,906
64	Neural control of the anorexia-cachexia syndrome. American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E1000-E1008.	1.8	105
65	Prostacyclin signaling regulates circulating ghrelin during acute inflammation. Journal of Endocrinology, 2008, 196, 263-273.	1.2	30
66	Regulation of Agouti-Related Protein Messenger Ribonucleic Acid Transcription and Peptide Secretion by Acute and Chronic Inflammation. Endocrinology, 2008, 149, 4837-4845.	1.4	79
67	Ghrelin Treatment of Chronic Kidney Disease: Improvements in Lean Body Mass and Cytokine Profile. Endocrinology, 2008, 149, 827-835.	1.4	138
68	Ghrelin Treatment Causes Increased Food Intake and Retention of Lean Body Mass in a Rat Model of Cancer Cachexia. Endocrinology, 2007, 148, 3004-3012.	1.4	162
69	Regulation of Central Melanocortin Signaling by Interleukin-1β. Endocrinology, 2007, 148, 4217-4225.	1.4	128
70	Peripheral Administration of the Melanocortin-4 Receptor Antagonist NBI-12i Ameliorates Uremia-Associated Cachexia in Mice. Journal of the American Society of Nephrology: JASN, 2007, 18, 2517-2524.	3.0	67
71	Central mechanisms controlling appetite and food intake in a cancer setting: an update. Current Opinion in Supportive and Palliative Care, 2007, 1, 306-311.	0.5	2
72	Design, Synthesis, In Vitro, and In Vivo Characterization of Phenylpiperazines and Pyridinylpiperazines as Potent and Selective Antagonists of the Melanocortin-4 Receptor. Journal of Medicinal Chemistry, 2007, 50, 6356-6366.	2.9	18

#	Article	IF	CITATIONS
73	Pyrrolidinones as orally bioavailable antagonists of the human melanocortin-4 receptor with anti-cachectic activity. Bioorganic and Medicinal Chemistry, 2007, 15, 5166-5176.	1.4	12
74	The Role of Central Melanocortins in Cachexia. , 2007, , 59-68.		0
75	The regulation of food intake by selective stimulation of the type 3 melanocortin receptor (MC3R). Peptides, 2006, 27, 259-264.	1.2	100
76	Cachexia: lessons from melanocortin antagonism. Trends in Endocrinology and Metabolism, 2006, 17, 199-204.	3.1	46
77	Anticatabolic properties of melanocortin-4 receptor antagonists. Current Opinion in Clinical Nutrition and Metabolic Care, 2006, 9, 196-200.	1.3	8
78	Therapy insight: use of melanocortin antagonists in the treatment of cachexia in chronic disease. Nature Clinical Practice Endocrinology and Metabolism, 2006, 2, 459-466.	2.9	54
79	Mechanisms of Disease: cytokine and adipokine signaling in uremic cachexia. Nature Clinical Practice Nephrology, 2006, 2, 527-534.	2.0	71
80	Orexigenic and anorexigenic mechanisms in the control of nutrition in chronic kidney disease. Pediatric Nephrology, 2005, 20, 427-431.	0.9	87
81	The Regulation of Feeding and Metabolic Rate and the Prevention of Murine Cancer Cachexia with a Small-Molecule Melanocortin-4 Receptor Antagonist. Endocrinology, 2005, 146, 2766-2773.	1.4	93
82	The use of melanocortin antagonists in cachexia of chronic disease. Expert Opinion on Investigational Drugs, 2005, 14, 1233-1240.	1.9	31
83	Role of leptin and melanocortin signaling in uremia-associated cachexia. Journal of Clinical Investigation, 2005, 115, 1659-1665.	3.9	218
84	Ala67Thr polymorphism in the Agouti-related peptide gene is associated with inherited leanness in humans. , 2004, 126A, 267-271.		55
85	Cancer anorexia-cachexia syndrome: cytokines and neuropeptides. Current Opinion in Clinical Nutrition and Metabolic Care, 2004, 7, 427-434.	1.3	163
86	The Role of the Melanocortinâ€3 Receptor in Cachexia. Annals of the New York Academy of Sciences, 2003, 994, 258-266.	1.8	25
87	Differential Role of Melanocortin Receptor Subtypes in Cachexia. Endocrinology, 2003, 144, 1513-1523.	1.4	124
88	Melanocortin-4 receptor is required for acute homeostatic responses to increased dietary fat. Nature Neuroscience, 2001, 4, 605-611.	7.1	302