
Miguel Quesada-Gonzalez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8461919/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interstitial Boron-Doped TiO ₂ Thin Films: The Significant Effect of Boron on TiO ₂ Coatings Grown by Atmospheric Pressure Chemical Vapor Deposition. ACS Applied Materials & Interfaces, 2016, 8, 25024-25029.	8.0	44
2	Significance of a Noble Metal Nanolayer on the UV and Visible Light Photocatalytic Activity of Anatase TiO ₂ Thin Films Grown from a Scalable PECVD/PVD Approach. ACS Applied Materials & Interfaces, 2017, 9, 41200-41209.	8.0	42
3	On the apparent visible-light and enhanced UV-light photocatalytic activity of nitrogen-doped TiO 2 thin films. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 333, 49-55.	3.9	29
4	Interstitial boron-doped anatase TiO ₂ thin-films on optical fibres: atmospheric pressure-plasma enhanced chemical vapour deposition as the key for functional oxide coatings on temperature-sensitive substrates. Journal of Materials Chemistry A, 2017, 5, 10836-10842.	10.3	25
5	Deeper Understanding of Interstitial Boron-Doped Anatase Thin Films as A Multifunctional Layer Through Theory and Experiment. Journal of Physical Chemistry C, 2018, 122, 714-726.	3.1	16