Claudia Scholl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/846172/publications.pdf Version: 2024-02-01

		840119	839053
22	1,813	11	18
papers	citations	h-index	g-index
22	22	22	3610
all docs	docs citations	times ranked	citing authors

CLAUDIA SCHOLL

#	Article	IF	CITATIONS
1	Synthetic Lethal Interaction between Oncogenic KRAS Dependency and STK33 Suppression in Human Cancer Cells. Cell, 2009, 137, 821-834.	13.5	510
2	BCAT1 restricts αKG levels in AML stem cells leading to IDHmut-like DNA hypermethylation. Nature, 2017, 551, 384-388.	13.7	261
3	The CDK inhibitor CR8 acts as a molecular glue degrader that depletes cyclin K. Nature, 2020, 585, 293-297.	13.7	219
4	Small-molecule-induced polymerization triggers degradation of BCL6. Nature, 2020, 588, 164-168.	13.7	143
5	Requirement for CDK6 in MLL-rearranged acute myeloid leukemia. Blood, 2014, 124, 13-23.	0.6	139
6	Deregulation of Signaling Pathways in Acute Myeloid Leukemia. Seminars in Oncology, 2008, 35, 336-345.	0.8	136
7	The homeobox gene CDX2 is aberrantly expressed in most cases of acute myeloid leukemia and promotes leukemogenesis. Journal of Clinical Investigation, 2007, 117, 1037-1048.	3.9	127
8	Comparative analysis of KRAS codon 12, 13, 18, 61 and 117 mutations using human MCF10A isogenic cell lines. Scientific Reports, 2015, 5, 8535.	1.6	111
9	Targeting of KRAS mutant tumors by HSP90 inhibitors involves degradation of STK33. Journal of Experimental Medicine, 2012, 209, 697-711.	4.2	63
10	HSP90 Supports Tumor Growth and Angiogenesis through PRKD2 Protein Stabilization. Cancer Research, 2014, 74, 7125-7136.	0.4	52
11	Stk33 is required for spermatid differentiation and male fertility in mice. Developmental Biology, 2018, 433, 84-93.	0.9	13
12	Aberrant Expression of the Homeobox Gene CDX2 in Acute Myeloid Leukemia Blood, 2006, 108, 8-8.	0.6	11
13	Requirement for LIM kinases in acute myeloid leukemia. Leukemia, 2020, 34, 3173-3185.	3.3	8
14	Gene Expression Profiling Identifies Distinct Subclasses in Core Binding Factor Acute Myeloid Leukemia Blood, 2005, 106, 673-673.	0.6	7
15	BTBBCL6 dimers as building blocks for reversible drug-induced protein oligomerization. Cell Reports Methods, 2022, 2, 100193.	1.4	5
16	Cdx4 Upregulates Hox Gene Expression and Generates Acute Myeloid Leukemia Alone and in Cooperation with Meis1a in a Murine Model Blood, 2006, 108, 10-10.	0.6	3
17	High-Throughput Sequence Analysis of the Tyrosine Kinome in Acute Myeloid Leukemia Blood, 2007, 110, 886-886.	0.6	3
18	Identification of Driver and Passenger Mutations of FLT3 by High-Throughput DNA Sequence Analysis and Functional Assessment of Candidate Alleles Blood, 2007, 110, 206-206.	0.6	2

CLAUDIA SCHOLL

#	Article	IF	CITATIONS
19	Identification of Distinct inv(16) Subclasses in Adult Acute Myeloid Leukemia Based on Gene Expression Profiling Blood, 2004, 104, 2037-2037.	0.6	0
20	KIT Mutations Define Characteristic Gene Expression Signatures in Core Binding Factor Leukemias Blood, 2007, 110, 3163-3163.	0.6	0
21	High-Throughput RNA Interference Screening Identifies Synthetic Lethality Between Oncogenic KRAS Dependency and Suppression of STK33. Blood, 2008, 112, 3806-3806.	0.6	0
22	Myeloid Leukemogenesis Driven by Aberrant CDX2 Expression Involves Transcriptional Repression of KLF4 and Deregulated PPARÎ ³ Signaling. Blood, 2011, 118, 1355-1355.	0.6	0