Teresa Bandosz

List of Publications by Citations

Source: https://exaly.com/author-pdf/8460978/teresa-bandosz-publications-by-citations.pdf

Version: 2024-04-11

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

80 126 418 22,750 h-index g-index citations papers 8.3 24,716 7.56 427 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
418	Combined Effect of Nitrogen- and Oxygen-Containing Functional Groups of Microporous Activated Carbon on its Electrochemical Performance in Supercapacitors. <i>Advanced Functional Materials</i> , 2009 , 19, 438-447	15.6	1287
417	Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance. <i>Carbon</i> , 2008 , 46, 1475-1488	10.4	651
416	MOF G raphite Oxide Composites: Combining the Uniqueness of Graphene Layers and Metal D rganic Frameworks. <i>Advanced Materials</i> , 2009 , 21, 4753-4757	24	489
415	Water in porous carbons. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2001 , 187-188, 539-568	5.1	314
414	On the adsorption/oxidation of hydrogen sulfide on activated carbons at ambient temperatures. Journal of Colloid and Interface Science, 2002, 246, 1-20	9.3	272
413	A Molecular Model for Adsorption of Water on Activated Carbon: Comparison of Simulation and Experiment. <i>Langmuir</i> , 1999 , 15, 533-544	4	267
412	Enhanced Adsorption of Ammonia on Metal-Organic Framework/Graphite Oxide Composites: Analysis of Surface Interactions. <i>Advanced Functional Materials</i> , 2010 , 20, 111-118	15.6	266
411	Synthesis, Characterization, and Ammonia Adsorption Properties of Mesoporous Metal®rganic Framework (MIL(Fe))®raphite Oxide Composites: Exploring the Limits of Materials Fabrication. <i>Advanced Functional Materials</i> , 2011 , 21, 2108-2117	15.6	262
410	The synthesis and characterization of copper-based metalBrganic framework/graphite oxide composites. <i>Carbon</i> , 2011 , 49, 563-572	10.4	250
409	Surface Chemistry of Activated Carbons: Combining the Results of Temperature-Programmed Desorption, Boehm, and Potentiometric Titrations. <i>Journal of Colloid and Interface Science</i> , 2001 , 240, 252-258	9.3	232
408	Bituminous coal-based activated carbons modified with nitrogen as adsorbents of hydrogen sulfide. <i>Carbon</i> , 2004 , 42, 469-476	10.4	225
407	Pore structure and surface chemistry of adsorbents obtained by pyrolysis of sewage sludge-derived fertilizer. <i>Carbon</i> , 2001 , 39, 1971-1979	10.4	225
406	Revisiting the chemistry of graphite oxides and its effect on ammonia adsorption. <i>Journal of Materials Chemistry</i> , 2009 , 19, 9176		215
405	Importance of structural and chemical heterogeneity of activated carbon surfaces for adsorption of dibenzothiophene. <i>Langmuir</i> , 2005 , 21, 7752-9	4	195
404	Exploring the coordination chemistry of MOF-graphite oxide composites and their applications as adsorbents. <i>Dalton Transactions</i> , 2012 , 41, 4027-35	4.3	192
403	Investigation of factors affecting adsorption of transition metals on oxidized carbon nanotubes. Journal of Hazardous Materials, 2009 , 167, 357-65	12.8	191
402	Reactive adsorption of ammonia on Cu-based MOF/graphene composites. <i>Langmuir</i> , 2010 , 26, 15302-9	4	181

401	Carbon surface characterization in terms of its acidity constant distribution. <i>Carbon</i> , 1994 , 32, 1026-102	2810.4	181
400	Adsorption/Oxidation of Hydrogen Sulfide on Nitrogen-Containing Activated Carbons. <i>Langmuir</i> , 2000 , 16, 1980-1986	4	178
399	Role of surface chemistry in adsorption of phenol on activated carbons. <i>Journal of Colloid and Interface Science</i> , 2003 , 264, 307-12	9.3	176
398	Hydrogen sulfide adsorption on MOFs and MOF/graphite oxide composites. <i>ChemPhysChem</i> , 2010 , 11, 3678-84	3.2	173
397	Analysis of the Relationship between H2S Removal Capacity and Surface Properties of Unimpregnated Activated Carbons. <i>Environmental Science & Environmental Science & Environm</i>	10.3	173
396	Surface functionality and porosity of activated carbons obtained from chemical activation of wood. <i>Carbon</i> , 2000 , 38, 669-674	10.4	170
395	Characterization of the surfaces of activated carbons in terms of their acidity constant distributions. <i>Carbon</i> , 1993 , 31, 1193-1202	10.4	169
394	Effect of pore structure and surface chemistry of virgin activated carbons on removal of hydrogen sulfide. <i>Carbon</i> , 1999 , 37, 483-491	10.4	166
393	Reactive adsorption of acidic gases on MOF/graphite oxide composites. <i>Microporous and Mesoporous Materials</i> , 2012 , 154, 107-112	5.3	165
392	Sewage sludge-derived materials as efficient adsorbents for removal of hydrogen sulfide. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	157
391	S- and N-doped carbon quantum dots: Surface chemistry dependent antibacterial activity. <i>Carbon</i> , 2018 , 135, 104-111	10.4	152
390	Textural and chemical factors affecting adsorption capacity of activated carbon in highly efficient desulfurization of diesel fuel. <i>Carbon</i> , 2009 , 47, 2491-2500	10.4	146
389	Mechanism of Ammonia Retention on Graphite Oxides: Role of Surface Chemistry and Structure Journal of Physical Chemistry C, 2007 , 111, 15596-15604	3.8	145
388	MOFgraphite oxide nanocomposites: surface characterization and evaluation as adsorbents of ammonia. <i>Journal of Materials Chemistry</i> , 2009 , 19, 6521		136
387	The role of water and surface acidity on the reactive adsorption of ammonia on modified activated carbons. <i>Carbon</i> , 2007 , 45, 568-578	10.4	135
386	Reactions of VX, GD, and HD with Zr(OH)4: Near Instantaneous Decontamination of VX. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 11606-11614	3.8	134
385	Effect of pH and Surface Chemistry on the Mechanism of H(2)S Removal by Activated Carbons. Journal of Colloid and Interface Science, 1999 , 216, 360-369	9.3	130
384	Reactive adsorption of NO2 on copper-based metal-organic framework and graphite oxide/metal-organic framework composites. <i>ACS Applied Materials & Discourse (Materials & Discours)</i> 2, 3606-13	9.5	128

383	S-doped micro/mesoporous carbongraphene composites as efficient supercapacitors in alkaline media. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 11717	13	126
382	Experimental Study of Water Adsorption on Activated Carbons. <i>Langmuir</i> , 1999 , 15, 587-593	4	125
381	Effect of Surface Characteristics of Wood-Based Activated Carbons on Adsorption of Hydrogen Sulfide. <i>Journal of Colloid and Interface Science</i> , 1999 , 214, 407-415	9.3	124
380	CuBTC MOFgraphene-based hybrid materials as low concentration ammonia sensors. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 11417-11429	13	120
379	Metal-free Nanoporous Carbon as a Catalyst for Electrochemical Reduction of CO2 to CO and CH4. <i>ChemSusChem</i> , 2016 , 9, 606-16	8.3	120
378	Study of Water Adsorption on Activated Carbons with Different Degrees of Surface Oxidation. Journal of Colloid and Interface Science, 1999 , 210, 367-374	9.3	119
377	Adsorption of SO2on Activated Carbons: The Effect of Nitrogen Functionality and Pore Sizes. <i>Langmuir</i> , 2002 , 18, 1257-1264	4	118
376	Toward understanding reactive adsorption of ammonia on Cu-MOF/graphite oxide nanocomposites. <i>Langmuir</i> , 2011 , 27, 13043-51	4	117
375	Metal-loaded polystyrene-based activated carbons as dibenzothiophene removal media via reactive adsorption. <i>Carbon</i> , 2006 , 44, 2404-2412	10.4	117
374	MOF/graphite oxide hybrid materials: exploring the new concept of adsorbents and catalysts. <i>Adsorption</i> , 2011 , 17, 5-16	2.6	116
373	A Role of Sodium Hydroxide in the Process of Hydrogen Sulfide Adsorption/Oxidation on Caustic-Impregnated Activated Carbons. <i>Industrial & Engineering Chemistry Research</i> , 2002 , 41, 672-	- <i>67</i> 9	114
372	The effects of activated carbon surface features on the reactive adsorption of carbamazepine and sulfamethoxazole. <i>Carbon</i> , 2014 , 80, 419-432	10.4	112
371	Effect of Surface Chemistry on Sorption of Water and Methanol on Activated Carbons. <i>Langmuir</i> , 1996 , 12, 6480-6486	4	112
370	Ce(III) doped Zr-based MOFs as excellent NO2 adsorbents at ambient conditions. <i>ACS Applied Materials & Discourse MoFs as excellent NO2 adsorbents at ambient conditions. <i>ACS Applied Materials & Discourse MoFs as excellent NO2 adsorbents at ambient conditions. ACS Applied Materials & Discourse MoFs as excellent NO2 adsorbents at ambient conditions. ACS Applied Materials & Discourse MoFs as excellent NO2 adsorbents at ambient conditions. ACS Applied Materials & Discourse MoFs as excellent NO2 adsorbents at ambient conditions. ACS Applied Materials & Discourse MoFs as excellent NO2 adsorbents at ambient conditions. ACS Applied Materials & Discourse MoFs as excellent NO2 adsorbents at ambient conditions. ACS Applied Materials & Discourse MoFs and Discourse MoFs an</i></i>	9.5	111
369	pH of activated carbon surface as an indication of its suitability for H2S removal from moist air streams. <i>Carbon</i> , 2001 , 39, 1897-1905	10.4	111
368	Effect of surface phosphorus functionalities of activated carbons containing oxygen and nitrogen on electrochemical capacitance. <i>Carbon</i> , 2009 , 47, 1576-1584	10.4	107
367	On the Mechanism of Hydrogen Sulfide Removal from Moist Air on Catalytic Carbonaceous Adsorbents. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 530-538	3.9	107
366	H2S adsorption/oxidation on unmodified activated carbons: importance of prehumidification. <i>Carbon</i> , 2001 , 39, 2303-2311	10.4	103

(1997-2009)

365	Graphite Oxide/Polyoxometalate Nanocomposites as Adsorbents of Ammonia. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 3800-3809	3.8	102
364	On the reactive adsorption of ammonia on activated carbons modified by impregnation with inorganic compounds. <i>Journal of Colloid and Interface Science</i> , 2009 , 338, 329-45	9.3	101
363	Thermal regeneration of a spent activated carbon previously used as hydrogen sulfide adsorbent. <i>Carbon</i> , 2001 , 39, 1319-1326	10.4	101
362	Interactions of NO2 with Zr-based MOF: effects of the size of organic linkers on NO2 adsorption at ambient conditions. <i>Langmuir</i> , 2013 , 29, 168-74	4	98
361	Removal of dorzolamide from biomedical wastewaters with adsorption onto graphite oxide/poly(acrylic acid) grafted chitosan nanocomposite. <i>Bioresource Technology</i> , 2014 , 152, 399-406	11	96
360	Unmodified versus Caustics- Impregnated Carbons for Control of Hydrogen Sulfide Emissions from Sewage Treatment Plants. <i>Environmental Science & Emp; Technology</i> , 2000 , 34, 1069-1074	10.3	96
359	Adsorption of valeric acid from aqueous solution onto activated carbons: role of surface basic sites. Journal of Colloid and Interface Science, 2004 , 273, 64-72	9.3	94
358	Activated carbons with metal containing bentonite binders as adsorbents of hydrogen sulfide. <i>Carbon</i> , 2005 , 43, 359-367	10.4	94
357	Comparison of methods to assess surface acidic groups on activated carbons. <i>Analytical Chemistry</i> , 1992 , 64, 891-895	7.8	94
356	Role of graphite precursor in the performance of graphite oxides as ammonia adsorbents. <i>Carbon</i> , 2009 , 47, 445-456	10.4	93
355	Carbon dots as fluorescent sensor for detection of explosive nitrocompounds. <i>Carbon</i> , 2016 , 106, 171-1	17 :8 0.4	93
354	Adsorption of methyl mercaptan on activated carbons. <i>Environmental Science & Environmental Science & </i>	10.3	92
353	Spent coffee-based activated carbon: specific surface features and their importance for H2S separation process. <i>Journal of Hazardous Materials</i> , 2012 , 201-202, 141-7	12.8	91
352	Surface properties of porous carbon obtained from polystyrene sulfonic acid-based organic salts. <i>Langmuir</i> , 2004 , 20, 3388-97	4	91
351	The effects of urea modification and heat treatment on the process of NO2 removal by wood-based activated carbon. <i>Journal of Colloid and Interface Science</i> , 2009 , 333, 97-103	9.3	89
350	Adsorption of hydrogen sulfide on montmorillonites modified with iron. <i>Chemosphere</i> , 2005 , 59, 343-53	8 8.4	88
349	Removal of antibiotics from water using sewage sludge- and waste oil sludge-derived adsorbents. <i>Water Research</i> , 2012 , 46, 4081-90	12.5	87
348	Determination of the Pore Size Distribution and Network Connectivity in Microporous Solids by Adsorption Measurements and Monte Carlo Simulation. <i>Langmuir</i> , 1997 , 13, 4435-4445	4	87

347	Interactions of Ammonia with the Surface of Microporous Carbon Impregnated with Transition Metal Chlorides. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 12705-12714	3.8	87
346	The role of sulfur-containing groups in ammonia retention on activated carbons. <i>Carbon</i> , 2010 , 48, 654-	-6 .6 ₹.4	85
345	Determination of Proton Affinity Distributions for Chemical Systems in Aqueous Environments Using a Stable Numerical Solution of the Adsorption Integral Equation. <i>Journal of Colloid and Interface Science</i> , 1995 , 172, 341-346	9.3	85
344	Engineering the surface of a new class of adsorbents: metal-organic framework/graphite oxide composites. <i>Journal of Colloid and Interface Science</i> , 2015 , 447, 139-51	9.3	84
343	Complexity of CO2 adsorption on nanoporous sulfur-doped carbons (Is surface chemistry an important factor?. <i>Carbon</i> , 2014 , 74, 207-217	10.4	82
342	Superior performance of copper based MOF and aminated graphite oxide composites as CO2 adsorbents at room temperature. <i>ACS Applied Materials & Distributed Materials & Distri</i>	9.5	82
341	Luminescent carbon nanoparticles: effects of chemical functionalization, and evaluation of Ag+sensing properties. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 8342	13	8o
340	Photoactivity of S-doped nanoporous activated carbons: A new perspective for harvesting solar energy on carbon-based semiconductors. <i>Applied Catalysis A: General</i> , 2012 , 445-446, 159-165	5.1	80
339	Enhanced reactive adsorption of hydrogen sulfide on the composites of graphene/graphite oxide with copper (hydr)oxychlorides. <i>ACS Applied Materials & amp; Interfaces</i> , 2012 , 4, 3316-24	9.5	80
338	Graphite Oxides Obtained from Porous Graphite: The Role of Surface Chemistry and Texture in Ammonia Retention at Ambient Conditions. <i>Advanced Functional Materials</i> , 2010 , 20, 1670-1679	15.6	80
337	Adsorption of Dibenzothiophenes on Nanoporous Carbons: Identification of Specific Adsorption Sites Governing Capacity and Selectivity <i>Energy & Energy & Ene</i>	4.1	79
336	Smart textiles of MOF/g-CN nanospheres for the rapid detection/detoxification of chemical warfare agents. <i>Nanoscale Horizons</i> , 2017 , 2, 356-364	10.8	78
335	Reactive adsorption of hydrogen sulfide on graphite oxide/Zr(OH)4 composites. <i>Chemical Engineering Journal</i> , 2011 , 166, 1032-1038	14.7	77
334	Effects of Surface Features on Adsorption of SO2 on Graphite Oxide/Zr(OH)4 Composites. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 14552-14560	3.8	77
333	Removal of ammonia by graphite oxide via its intercalation and reactive adsorption. <i>Carbon</i> , 2007 , 45, 2130-2132	10.4	74
332	Oxidized g-C N Nanospheres as Catalytically Photoactive Linkers in MOF/g-C N Composite of Hierarchical Pore Structure. <i>Small</i> , 2017 , 13, 1601758	11	73
331	Removal of formaldehyde on carbon -based materials: A review of the recent approaches and findings. <i>Carbon</i> , 2018 , 137, 207-221	10.4	72
330	Effect of ozonolysis on the pore structure, surface chemistry, and bundling of single-walled carbon nanotubes. <i>Journal of Colloid and Interface Science</i> , 2008 , 317, 375-82	9.3	72

329	Efficient hydrogen sulfide adsorbents obtained by pyrolysis of sewage sludge derived fertilizer modified with spent mineral oil. <i>Environmental Science & Environmental Scienc</i>	10.3	72
328	Carbon dots obtained using hydrothermal treatment of formaldehyde. Cell imaging in vitro. <i>Nanoscale</i> , 2014 , 6, 9071-7	7.7	71
327	Visible-light-enhanced interactions of hydrogen sulfide with composites of zinc (oxy)hydroxide with graphite oxide and graphene. <i>Langmuir</i> , 2012 , 28, 1337-46	4	71
326	Pore Structure of CarbonMineral Nanocomposites and Derived Carbons Obtained by Template Carbonization. <i>Chemistry of Materials</i> , 1996 , 8, 2023-2029	9.6	71
325	Interactions of 4,6-dimethyldibenzothiophene with the surface of activated carbons. <i>Langmuir</i> , 2009 , 25, 9302-12	4	70
324	Removal of hydrogen sulfide from biogas on sludge-derived adsorbents. <i>Fuel</i> , 2007 , 86, 2736-2746	7.1	68
323	Pyridinic-N groups and ultramicropore nanoreactors enhance CO2 electrochemical reduction on porous carbon catalysts. <i>Applied Catalysis B: Environmental</i> , 2017 , 207, 195-206	21.8	67
322	Cu-BTC/aminated graphite oxide composites as high-efficiency CO2 capture media. <i>ACS Applied Materials & ACS Applied & ACS Applied Materials & ACS Applied & ACS App</i>	9.5	67
321	Effect of pyrolysis temperature and time on catalytic performance of sewage sludge/industrial sludge-based composite adsorbents. <i>Applied Catalysis B: Environmental</i> , 2006 , 67, 77-85	21.8	67
320	Comparison of the Surface Features of Two Wood-Based Activated Carbons. <i>Industrial & Engineering Chemistry Research</i> , 2000 , 39, 301-306	3.9	65
319	Study of H2S Adsorption and Water Regeneration of Spent Coconut-Based Activated Carbon. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	65
318	New copper/GO based material as an efficient oxygen reduction catalyst in an alkaline medium: The role of unique Cu/rGO architecture. <i>Applied Catalysis B: Environmental</i> , 2015 , 163, 424-435	21.8	64
317	Activated carbon-based gas sensors: effects of surface features on the sensing mechanism. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 3821-3831	13	64
316	Effect of Surface Characteristics on Adsorption of Methyl Mercaptan on Activated Carbons. <i>Industrial & Engineering Chemistry Research</i> , 2002 , 41, 4346-4352	3.9	64
315	Evidence for CO2 reactive adsorption on nanoporous S- and N-doped carbon at ambient conditions. <i>Carbon</i> , 2016 , 96, 856-863	10.4	63
314	Adsorption/Oxidation of CH3SH on Activated Carbons Containing Nitrogen. <i>Langmuir</i> , 2003 , 19, 6115-6	51,21	63
313	Catalytic properties of activated carbon surface in the process of adsorption/oxidation of methyl mercaptan. <i>Catalysis Today</i> , 2005 , 99, 323-328	5.3	62
312	Porous carbon modified with sulfur in energy related applications. <i>Carbon</i> , 2017 , 118, 561-577	10.4	61

311	Adsorption of SO2 on sewage sludge-derived materials. <i>Environmental Science & Environmental Science &</i>	10.3	61
310	Adsorptive Removal of Thiophenic Compounds from Oils by Activated Carbon Modified with Concentrated Nitric Acid. <i>Energy & Discourse Sensors</i> 27, 1499-1505	4.1	59
309	Template-derived mesoporous carbons with highly dispersed transition metals as media for the reactive adsorption of dibenzothiophene. <i>Langmuir</i> , 2007 , 23, 6033-41	4	59
308	Desulfurization of digester gas: prediction of activated carbon bed performance at low concentrations of hydrogen sulfide. <i>Catalysis Today</i> , 2005 , 99, 329-337	5.3	59
307	Changes in graphite oxide texture and chemistry upon oxidation and reduction and their effect on adsorption of ammonia. <i>Carbon</i> , 2011 , 49, 4392-4402	10.4	58
306	Adsorption of Water and Methanol on Micro- and Mesoporous Wood-Based Activated Carbons. <i>Langmuir</i> , 2000 , 16, 5435-5440	4	58
305	Role of microporosity and surface chemistry in adsorption of 4,6-dimethyldibenzothiophene on polymer-derived activated carbons. <i>Fuel</i> , 2010 , 89, 1499-1507	7.1	56
304	Activated carbons modified with sewage sludge derived phase and their application in the process of NO2 removal. <i>Carbon</i> , 2007 , 45, 2537-2546	10.4	56
303	Photooxidation of dibenzothiophene on TiO(2)/hectorite thin films layered catalyst. <i>Journal of Colloid and Interface Science</i> , 2006 , 299, 125-35	9.3	56
302	Effect of graphite features on the properties of metal-organic framework/graphite hybrid materials prepared using an in situ process. <i>Langmuir</i> , 2011 , 27, 10234-42	4	55
301	H2S adsorption/oxidation on materials obtained using sulfuric acid activation of sewage sludge-derived fertilizer. <i>Journal of Colloid and Interface Science</i> , 2002 , 252, 188-94	9.3	55
300	Effect of surface chemical groups on energetic heterogeneity of activated carbons. <i>Langmuir</i> , 1993 , 9, 2518-2522	4	55
299	Desulfurization of air at high and low H2S concentrations. Chemical Engineering Journal, 2009, 155, 594-	-60,27	54
298	Investigation of the enhancing effects of sulfur and/or oxygen functional groups of nanoporous carbons on adsorption of dibenzothiophenes. <i>Carbon</i> , 2011 , 49, 1216-1224	10.4	54
297	The effect of oxidation on the surface chemistry of sulfur-containing carbons and their arsine adsorption capacity. <i>Carbon</i> , 2010 , 48, 1779-1787	10.4	54
296	Acetaldehyde Adsorption on Nitrogen-Containing Activated Carbons. <i>Langmuir</i> , 2002 , 18, 3213-3218	4	54
295	Adsorption near Ambient Temperatures of Methane, Carbon Tetrafluoride, and Sulfur Hexafluoride on Commercial Activated Carbons. <i>Journal of Chemical & Data</i> , 1995, 40, 1288-1292	2.8	54
294	Active pore space utilization in nanoporous carbon-based supercapacitors: Effects of conductivity and pore accessibility. <i>Journal of Power Sources</i> , 2012 , 220, 243-252	8.9	53

(2012-2010)

293	Adsorption of dibenzothiophenes on activated carbons with copper and iron deposited on their surfaces. <i>Fuel Processing Technology</i> , 2010 , 91, 693-701	7.2	53
292	Revisiting the Effect of Surface Chemistry on Adsorption of Water on Activated Carbons. <i>Journal of Physical Chemistry B</i> , 1999 , 103, 3877-3884	3.4	53
291	Insight into the mechanism of CO2 adsorption on Cu B TC and its composites with graphite oxide or aminated graphite oxide. <i>Chemical Engineering Journal</i> , 2014 , 239, 399-407	14.7	52
290	Manganese oxide and graphite oxide/MnO2 composites as reactive adsorbents of ammonia at ambient conditions. <i>Microporous and Mesoporous Materials</i> , 2012 , 150, 55-63	5.3	52
289	Aminated graphite oxides and their composites with copper-based metal®rganic framework: in search for efficient media for CO2 sequestration. <i>RSC Advances</i> , 2013 , 3, 9932	3.7	52
288	Effect of confined space reduction of graphite oxide followed by sulfur doping on oxygen reduction reaction in neutral electrolyte. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 7059	13	52
287	Bifunctional ZnO-MgO/activated carbon adsorbents boost H2S room temperature adsorption and catalytic oxidation. <i>Applied Catalysis B: Environmental</i> , 2020 , 266, 118674	21.8	51
286	Enhancement in dibenzothiophene reactive adsorption from liquid fuel via incorporation of sulfur heteroatoms into the nanoporous carbon matrix. <i>ChemSusChem</i> , 2011 , 4, 139-47	8.3	51
285	Removal of copper on composite sewage sludge/industrial sludge-based adsorbents: the role of surface chemistry. <i>Journal of Colloid and Interface Science</i> , 2006 , 302, 379-88	9.3	51
284	Study of carbon-smectite composites and carbons obtained by in situ carbonization of polyfurfuryl alcohol. <i>Carbon</i> , 1994 , 32, 659-664	10.4	51
283	Confined space reduced graphite oxide doped with sulfur as metal-free oxygen reduction catalyst. <i>Carbon</i> , 2014 , 66, 227-233	10.4	50
282	Inverse Gas Chromatography Study of Modified Smectite Surfaces. <i>Clays and Clay Minerals</i> , 1992 , 40, 306-310	2.1	50
281	Reactive adsorption of mustard gas surrogate on zirconium (hydr)oxide/graphite oxide composites: the role of surface and chemical features. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 1008-1019	13	49
280	Removal of Cationic and Ionic Dyes on Industrial Municipal Sludge Based Composite Adsorbents. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 1786-1793	3.9	49
279	Enhanced reactive adsorption of H2S on CuBTC/ S- and N-doped GO composites. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 8194-8204	13	48
278	H2S Adsorption/Oxidation on Adsorbents Obtained from Pyrolysis of Sewage-Sludge-Derived Fertilizer Using Zinc Chloride Activation. <i>Industrial & Engineering Chemistry Research</i> , 2001 , 40, 3502	2 ³ 3510	48
277	Electrochemical Reduction of Oxygen on Hydrophobic Ultramicroporous PolyHIPE Carbon. <i>ACS Catalysis</i> , 2016 , 6, 5618-5628	13.1	48
276	Role of phosphorus in carbon matrix in desulfurization of diesel fuel using adsorption process. <i>Fuel</i> , 2012 , 92, 318-326	7.1	47

275	Reactive adsorption of SO2 on activated carbons with deposited iron nanoparticles. <i>Journal of Hazardous Materials</i> , 2013 , 246-247, 300-9	12.8	47
274	Interactions of NO2 with activated carbons modified with cerium, lanthanum and sodium chlorides. Journal of Hazardous Materials, 2009 , 165, 704-13	12.8	47
273	Application of inverse gas chromatography at infinite dilution to study the effects of oxidation of activated carbons. <i>Carbon</i> , 1992 , 30, 63-69	10.4	47
272	Role of sulfur and nitrogen surface groups in adsorption of formaldehyde on nanoporous carbons. <i>Carbon</i> , 2018 , 138, 283-291	10.4	46
271	Insight into the Capacitive Performance of Sulfur-Doped Nanoporous Carbons Modified by Addition of Graphene Phase. <i>Electroanalysis</i> , 2014 , 26, 109-120	3	46
270	A Study of Acetaldehyde Adsorption on Activated Carbons. <i>Journal of Colloid and Interface Science</i> , 2001 , 242, 44-51	9.3	46
269	Inverse gas chromatographic study of activated carbons: The effect of controlled oxidation on microstructure and surface chemical functionality. <i>Journal of Colloid and Interface Science</i> , 1992 , 151, 433-445	9.3	46
268	Effect of GO phase in Zn(OH)2/GO composite on the extent of photocatalytic reactive adsorption of mustard gas surrogate. <i>Applied Catalysis B: Environmental</i> , 2016 , 183, 37-46	21.8	45
267	Zinc (hydr)oxide/graphite based-phase composites: effect of the carbonaceous phase on surface properties and enhancement in electrical conductivity. <i>Journal of Materials Chemistry</i> , 2012 , 22, 7970		45
266	Role of Graphite Oxide (GO) and Polyaniline (PANI) in NO2 Reduction on GO-PANI Composites. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 6925-6935	3.9	45
265	Adsorption/Reduction of NO2 on Graphite Oxide/Iron Composites. <i>Industrial & Engineering Chemistry Research</i> , 2009 , 48, 10884-10891	3.9	44
264	Importance of carbon surface chemistry in development of iron-carbon composite adsorbents for arsenate removal. <i>Journal of Hazardous Materials</i> , 2011 , 186, 667-74	12.8	43
263	Role of Zr4+ cations in NO2 adsorption on Ce(1-x)Zr(x)O2 mixed oxides at ambient conditions. <i>Langmuir</i> , 2011 , 27, 9379-86	4	43
262	Analysis of sulfamethoxazole and trimethoprim adsorption on sewage sludge and fish waste derived adsorbents. <i>Microporous and Mesoporous Materials</i> , 2016 , 220, 58-72	5.3	42
261	Highly luminescent S-doped carbon dots for the selective detection of ammonia. <i>Carbon</i> , 2017 , 114, 54	4 <u>-15</u> 56	42
260	S-doped carbon aerogels/GO composites as oxygen reduction catalysts. <i>Journal of Energy Chemistry</i> , 2016 , 25, 236-245	12	42
259	Effect of surface chemical and structural heterogeneity of copper-based MOF/graphite oxide composites on the adsorption of ammonia. <i>Journal of Colloid and Interface Science</i> , 2014 , 417, 109-14	9.3	42
258	Municipal sludge-industrial sludge composite desulfurization adsorbents: synergy enhancing the catalytic properties. <i>Environmental Science & Environmental Science & Environm</i>	10.3	42

257	Visible light driven photoelectrochemical water splitting on metal free nanoporous carbon promoted by chromophoric functional groups. <i>Carbon</i> , 2014 , 79, 432-441	10.4	41	
256	Sulfur-Doped Carbon Aerogel as a Metal-Free Oxygen Reduction Catalyst. <i>ChemCatChem</i> , 2015 , 7, 2924	- 3<u>9</u>31	41	
255	Role of surface chemistry and morphology in the reactive adsorption of HB on iron (hydr)oxide/graphite oxide composites. <i>Langmuir</i> , 2015 , 31, 2730-42	4	41	
254	ReaxFF molecular dynamics simulation of thermal stability of a Cu3(BTC)2 metal-organic framework. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 11327-32	3.6	41	
253	Sewage sludge as a single precursor for development of composite adsorbents/catalysts. <i>Chemical Engineering Journal</i> , 2007 , 128, 59-67	14.7	41	
252	Surface features of exfoliated graphite/bentonite composites and their importance for ammonia adsorption. <i>Carbon</i> , 2008 , 46, 1241-1252	10.4	41	
251	Visible light enhanced removal of a sulfur mustard gas surrogate from a vapor phase on novel hydrous ferric oxide/graphite oxide composites. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 220-231	13	40	
250	Zinc peroxide nanoparticles: Surface, chemical and optical properties and the effect of thermal treatment on the detoxification of mustard gas. <i>Applied Catalysis B: Environmental</i> , 2018 , 226, 429-440	21.8	40	
249	Cobalt (hydr)oxide/graphite oxide composites: importance of surface chemical heterogeneity for reactive adsorption of hydrogen sulfide. <i>Journal of Colloid and Interface Science</i> , 2012 , 378, 1-9	9.3	40	
248	Effect of carbon surface modification with dimethylamine on reactive adsorption of NO(x). <i>Langmuir</i> , 2011 , 27, 1837-43	4	40	
247	Adsorption of ammonia on graphite oxide/aluminium polycation and graphite oxide/zirconium-aluminium polyoxycation composites. <i>Journal of Colloid and Interface Science</i> , 2008 , 324, 25-35	9.3	40	
246	Role of surface oxygen groups in incorporation of nitrogen to activated carbons via ethylmethylamine adsorption. <i>Langmuir</i> , 2005 , 21, 1282-9	4	40	
245	Effect of adsorbent composition on H2S removal on sewage sludge-based materials enriched with carbonaceous phase. <i>Carbon</i> , 2005 , 43, 1039-1048	10.4	40	
244	Sieving Properties of Carbons Obtained by Template Carbonization of Polyfurfuryl Alcohol within Mineral Matrixes. <i>Langmuir</i> , 1995 , 11, 3964-3969	4	40	
243	Application of inverse gas chromatography to the study of the surface properties of modified layered minerals. <i>Microporous Materials</i> , 1993 , 1, 73-79		40	
242	Nitrogen-Doped Activated Carbon-Based Ammonia Sensors: Effect of Specific Surface Functional Groups on Carbon Electronic Properties. <i>ACS Sensors</i> , 2016 , 1, 591-599	9.2	39	
241	Adsorption of carbamazepine on sludge/fish waste derived adsorbents: Effect of surface chemistry and texture. <i>Chemical Engineering Journal</i> , 2015 , 267, 170-181	14.7	39	
240	Role of Microporosity and Nitrogen Functionality on the Surface of Activated Carbon in the Process of Desulfurization of Digester Gas. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 4704-4711	3.8	39	

239	Influence of organics on the structure of water adsorbed on activated carbons. <i>Journal of Colloid and Interface Science</i> , 2002 , 253, 23-34	9.3	39
238	Characterization of Microporous Carbons Using Adsorption at Near Ambient Temperatures. <i>Langmuir</i> , 1996 , 12, 2837-2842	4	39
237	Photoactivity of g-C3 N4 /S-Doped Porous Carbon Composite: Synergistic Effect of Composite Formation. <i>ChemSusChem</i> , 2016 , 9, 795-9	8.3	39
236	Fingerprint imaging using N-doped carbon dots. <i>Carbon</i> , 2019 , 144, 791-797	10.4	39
235	Evaluation of CO2 interactions with S-doped nanoporous carbon and its composites with a reduced GO: Effect of surface features on an apparent physical adsorption mechanism. <i>Carbon</i> , 2016 , 98, 250-25	58 ^{10.4}	38
234	Carbon dots coated with vitamin B12 as selective ratiometric nanosensor for phenolic carbofuran. <i>Sensors and Actuators B: Chemical</i> , 2017 , 239, 553-561	8.5	38
233	Combined role of water and surface chemistry in reactive adsorption of ammonia on graphite oxides. <i>Langmuir</i> , 2010 , 26, 5491-8	4	38
232	Specific anion and cation capacitance in porous carbon blacks. <i>Carbon</i> , 2010 , 48, 1767-1778	10.4	38
231	Effect of Transition-Metal Cations on the Adsorption of H2S in Modified Pillared Clays. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 5812-5817	3.4	38
230	Key role of terminal hydroxyl groups and visible light in the reactive adsorption/catalytic conversion of mustard gas surrogate on zinc (hydr)oxides. <i>Applied Catalysis B: Environmental</i> , 2015 , 174-175, 96-104	21.8	37
229	A New Generation of Surface Active Carbon Textiles As Reactive Adsorbents of Indoor Formaldehyde. <i>ACS Applied Materials & Discourse Supplied Materials & D</i>	9.5	37
228	Carbon Quantum Dot Surface-Chemistry-Dependent Ag Release Governs the High Antibacterial Activity of Ag-Metal-Organic Framework Composites <i>ACS Applied Bio Materials</i> , 2018 , 1, 693-707	4.1	37
227	Origin and Perspectives of the Photochemical Activity of Nanoporous Carbons. <i>Advanced Science</i> , 2018 , 5, 1800293	13.6	37
226	Reactive adsorption of hydrogen sulfide on visible light photoactive zinc (hydr)oxide/graphite oxide and zinc (hydr)oxychloride/graphite oxide composites. <i>Applied Catalysis B: Environmental</i> , 2013 , 132-133, 321-331	21.8	37
225	Selective Adsorption of Dibenzothiophenes on Activated Carbons with Ag, Co, and Ni Species Deposited on Their Surfaces. <i>Energy & Deposited on Their Surfaces</i> .	4.1	37
224	Effect of the incorporation of nitrogen to a carbon matrix on the selectivity and capacity for adsorption of dibenzothiophenes from model diesel fuel. <i>Langmuir</i> , 2010 , 26, 227-33	4	36
223	Effect of fly ash addition on the removal of hydrogen sulfide from biogas and air on sewage sludge-based composite adsorbents. <i>Waste Management</i> , 2008 , 28, 1983-92	8.6	36
222	Oxidative adsorption of methyl mercaptan on nitrogen-enriched bituminous coal-based activated carbon. <i>Carbon</i> , 2005 , 43, 208-210	10.4	36

(2006-2016)

221	Mesoporous Graphitic Carbon Nitride-Based Nanospheres as Visible-Light Active Chemical Warfare Agents Decontaminant. <i>ChemNanoMat</i> , 2016 , 2, 268-272	3.5	35	
220	Combined Effect of Porosity and Surface Chemistry on the Electrochemical Reduction of Oxygen on Cellular Vitreous Carbon Foam Catalyst. <i>ACS Catalysis</i> , 2017 , 7, 7466-7478	13.1	35	
219	Interactions of NO2 with amine-functionalized SBA-15: effects of synthesis route. <i>Langmuir</i> , 2012 , 28, 5703-14	4	35	
218	Insight into ammonia sensing on heterogeneous S- and N- co-doped nanoporous carbons. <i>Carbon</i> , 2016 , 96, 1014-1021	10.4	34	
217	Effect of visible light and electrode wetting on the capacitive performance of S- and N-doped nanoporous carbons: Importance of surface chemistry. <i>Carbon</i> , 2014 , 78, 540-558	10.4	34	
216	Municipal waste conversion to hydrogen sulfide adsorbents: Investigation of the synergistic effects of sewage sludge/fish waste mixture. <i>Chemical Engineering Journal</i> , 2014 , 237, 88-94	14.7	34	
215	Evaluation of GO/MnO2 composites as supercapacitors in neutral electrolytes: role of graphite oxide oxidation level. <i>Journal of Materials Chemistry</i> , 2012 , 22, 23525		34	
214	Removal of ammonia from air on molybdenum and tungsten oxide modified activated carbons. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	34	
213	Dual Role of Water in the Process of Methyl Mercaptan Adsorption on Activated Carbons. <i>Langmuir</i> , 2002 , 18, 8553-8559	4	34	
212	Effect of nanoporous carbon surface chemistry on the removal of endocrine disruptors from water phase. <i>Journal of Colloid and Interface Science</i> , 2015 , 449, 180-91	9.3	33	
211	Reactive adsorption of ammonia and ammonia/water on CuBTC metal-organic framework: a ReaxFF molecular dynamics simulation. <i>Journal of Chemical Physics</i> , 2013 , 138, 034102	3.9	33	
210	Charge Storage Accessibility Factor as a Parameter Determining the Capacitive Performance of Nanoporous Carbon-Based Supercapacitors. <i>ACS Sustainable Chemistry and Engineering</i> , 2013 , 1, 1024-1	033	33	
209	Activated carbons modified with aluminium dirconium polycations as adsorbents for ammonia. <i>Microporous and Mesoporous Materials</i> , 2008 , 114, 137-147	5.3	33	
208	Wood-Based Activated Carbons as Adsorbents of Hydrogen Sulfide: A Study of Adsorption and Water Regeneration Processes. <i>Industrial & Engineering Chemistry Research</i> , 2000 , 39, 3849-3855	3.9	33	
207	Study of Hydrogen Sulfide Adsorption on Activated Carbons Using Inverse Gas Chromatography at Infinite Dilution. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 8841-8847	3.4	33	
206	Ultrasound-activated TiO2/GO-based bifunctional photoreactive adsorbents for detoxification of chemical warfare agent surrogate vapors. <i>Chemical Engineering Journal</i> , 2020 , 395, 125099	14.7	32	
205	Interactions of NO2 with sewage sludge based composite adsorbents. <i>Journal of Hazardous Materials</i> , 2008 , 154, 946-53	12.8	32	
204	Removal of Hydrogen Sulfide on Composite Sewage Sludge-Industrial Sludge-Based Adsorbents. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 3666-3672	3.9	32	

203	Desulfurization of Digester Gas on Catalytic Carbonaceous Adsorbents: Complexity of Interactions between the Surface and Components of the Gaseous Mixture. <i>Industrial & Discourse Industrial & Discours Chemistry Research</i> , 2006 , 45, 3658-3665	3.9	32
202	On the Possibility of Water Regeneration of Unimpregnated Activated Carbons Used as Hydrogen Sulfide Adsorbents. <i>Industrial & Engineering Chemistry Research</i> , 2000 , 39, 2439-2446	3.9	32
201	Surface acidity of pillared taeniolites in terms of their proton affinity distributions. <i>The Journal of Physical Chemistry</i> , 1995 , 99, 13522-13527		32
200	Micropore structure of template-derived carbons studied using adsorption of gases with different molecular diameters. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1995 , 91, 2929-2933		32
199	N-doped polymeric resin-derived porous carbons as efficient ammonia removal and detection media. <i>Carbon</i> , 2017 , 117, 228-239	10.4	31
198	Sensing of NH3 on heterogeneous nanoporous carbons in the presence of humidity. <i>Carbon</i> , 2016 , 100, 64-73	10.4	31
197	Barium titanate perovskite nanoparticles as a photoreactive medium for chemical warfare agent detoxification. <i>Journal of Colloid and Interface Science</i> , 2018 , 531, 233-244	9.3	31
196	New CuxSy/nanoporous carbon composites as efficient oxygen reduction catalysts in alkaline medium. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 20164-20176	13	31
195	Degradation of endocrine disruptor, bisphenol-A, on an mixed oxidation state manganese oxide/modified graphite oxide composite: A role of carbonaceous phase. <i>Journal of Colloid and Interface Science</i> , 2019 , 539, 516-524	9.3	31
194	Analysis of the competitive adsorption of pharmaceuticals on waste derived materials. <i>Chemical Engineering Journal</i> , 2016 , 287, 139-147	14.7	30
193	NO2 adsorption at ambient temperature on urea-modified ordered mesoporous carbon. <i>Carbon</i> , 2013 , 63, 283-293	10.4	30
192	Adsorption of hydrogen sulfide on graphite derived materials modified by incorporation of nitrogen. <i>Materials Chemistry and Physics</i> , 2009 , 113, 946-952	4.4	30
191	Role of Aluminum Oxycations in Retention of Ammonia on Modified Activated Carbons. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 16445-16452	3.8	30
190	Analysis of interactions of mustard gas surrogate vapors with porous carbon textiles. <i>Chemical Engineering Journal</i> , 2019 , 362, 758-766	14.7	29
189	Synthesis of hollow ellipsoidal silica nanostructures using a wet-chemical etching approach. <i>Journal of Colloid and Interface Science</i> , 2012 , 375, 106-11	9.3	29
188	Effect of amine modification on the properties of zirconiumBarboxylic acid based materials and their applications as NO2 adsorbents at ambient conditions. <i>Microporous and Mesoporous Materials</i> , 2014 , 188, 149-162	5.3	29
187	Desulfurization of Digester Gas on Wood-Based Activated Carbons Modified with Nitrogen: Importance of Surface Chemistry. <i>Energy & Energy </i>	4.1	29
186	ZnFe2O4/activated carbon as a regenerable adsorbent for catalytic removal of H2S from air at room temperature. <i>Chemical Engineering Journal</i> , 2020 , 394, 124906	14.7	28

185	Highly Efficient Air Desulfurization on Self-Assembled Bundles of Copper Hydroxide Nanorods. <i>ACS Applied Materials & Applied & Applied Materials & Applied </i>	9.5	28
184	Visible light photoactivity of sulfur and phosphorus doped nanoporous carbons in oxidation of dibenzothiophenes. <i>Fuel</i> , 2013 , 108, 846-849	7.1	28
183	Investigation of the role of surface chemistry and accessibility of cadmium adsorption sites on open-surface carbonaceous materials. <i>Langmuir</i> , 2008 , 24, 11701-10	4	28
182	Adsorption of Sulfur Hexafluoride and Propane at Temperatures near Ambient on Pillared Clays. <i>Journal of Chemical & Engineering Data</i> , 1996 , 41, 880-884	2.8	28
181	Comparison of melamine resin and melamine network as precursors for carbon electrodes. <i>Carbon</i> , 2015 , 81, 239-250	10.4	27
180	Chemically heterogeneous nitrogen sites of various reactivity in porous carbons provide high stability of CO2 electroreduction catalysts. <i>Applied Catalysis B: Environmental</i> , 2018 , 234, 1-9	21.8	27
179	Irreversible water mediated transformation of BCN from a 3D highly porous form to its nonporous hydrolyzed counterpart. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 3510-3521	13	27
178	Copper Hydroxyl Nitrate/Graphite Oxide Composite as Superoxidant for the Decomposition/Mineralization of Organophosphate-Based Chemical Warfare Agent Surrogate. <i>Advanced Materials Interfaces</i> , 2015 , 2, 1500215	4.6	27
177	Reactive adsorption of NO2 at dry conditions on sewage sludge-derived materials. <i>Environmental Science & Environmental Scienc</i>	10.3	27
176	Enhancement of the performance of activated carbons as municipal odor removal media by addition of a sewage-sludge-derived phase. <i>Environmental Science & Environmental Scien</i>	10.3	27
175	Solar light-driven photocatalytic degradation of phenol on S-doped nanoporous carbons: The role of functional groups in governing activity and selectivity. <i>Carbon</i> , 2020 , 156, 10-23	10.4	27
174	Effects of surface heterogeneity of cobalt oxyhydroxide/graphite oxide composites on reactive adsorption of hydrogen sulfide. <i>Microporous and Mesoporous Materials</i> , 2015 , 204, 8-14	5.3	26
173	Zinc (hydr)oxide/graphite oxide/AuNPs composites: role of surface features in HB reactive adsorption. <i>Journal of Colloid and Interface Science</i> , 2014 , 436, 296-305	9.3	26
172	Investigation of the Thermal Regeneration Efficiency of Activated Carbons Used in the Desulfurization of Model Diesel Fuel. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 14097-	14704	26
171	Effect of reduction treatment on copper modified activated carbons on NO(x) adsorption at room temperature. <i>Langmuir</i> , 2011 , 27, 5354-65	4	26
170	Inorganic-organic phase arrangement as a factor affecting gas-phase desulfurization on catalytic carbonaceous adsorbents. <i>Environmental Science & Environmental Science & Env</i>	10.3	26
169	Nitrogen enrichment of S-doped nanoporous carbon by g-C3N4: Insight into photosensitivity enhancement. <i>Carbon</i> , 2016 , 107, 895-906	10.4	26
168	Enhanced adsorption of hydrogen sulfide on mixed zinc/cobalt hydroxides: effect of morphology and an increased number of surface hydroxyl groups. <i>Journal of Colloid and Interface Science</i> , 2013 , 405, 218-25	9.3	25

167	Reactive adsorption of pharmaceuticals on tin oxide pillared montmorillonite: Effect of visible light exposure. <i>Chemical Engineering Journal</i> , 2015 , 259, 865-875	14.7	25
166	Interactions of NO2 at ambient temperature with cerium-zirconium mixed oxides supported on SBA-15. <i>Journal of Hazardous Materials</i> , 2011 , 197, 294-303	12.8	25
165	Nitrogen modified carbide-derived carbons as adsorbents of hydrogen sulfide. <i>Journal of Colloid and Interface Science</i> , 2009 , 330, 60-6	9.3	25
164	Study of carbon microstructure by using inverse gas chromatography. <i>Carbon</i> , 1994 , 32, 687-691	10.4	25
163	Defectous UiO-66 MOF Nanocomposites as Reactive Media of Superior Protection against Toxic Vapors. <i>ACS Applied Materials & Damp; Interfaces</i> , 2020 , 12, 14678-14689	9.5	25
162	Ferrihydrite deposited on cotton textiles as protection media against the chemical warfare agent surrogate (2-chloroethyl ethyl sulfide). <i>Journal of Materials Chemistry A</i> , 2017 , 5, 4972-4981	13	24
161	Engaging nanoporous carbons in Beyond adsorption[applications: Characterization, challenges and performance. <i>Carbon</i> , 2020 , 164, 69-84	10.4	24
160	Photoluminescence of nanoporous carbons: Opening a new application route for old materials. <i>Carbon</i> , 2014 , 77, 651-659	10.4	24
159	Microcalorimetric insight into the analysis of the reactive adsorption of ammonia on Cu-MOF and its composite with graphite oxide. <i>Journal of Materials Chemistry</i> , 2012 , 22, 21443		24
158	Effects of the addition of graphite oxide to the precursor of a nanoporous carbon on the electrochemical performance of the resulting carbonaceous composites. <i>Carbon</i> , 2012 , 50, 4144-4154	10.4	24
157	Interactions of NO2 and NO with carbonaceous adsorbents containing silver nanoparticles. <i>Langmuir</i> , 2010 , 26, 9457-64	4	24
156	Porosity and Surface Acidity of SiO2Al2O3Xerogels. <i>Journal of Colloid and Interface Science</i> , 1998 , 198, 347-353	9.3	24
155	Nanoporous carbon-composites as gas sensors: Importance of the specific adsorption forces for ammonia sensing mechanism. <i>Carbon</i> , 2017 , 121, 114-126	10.4	23
154	Detoxification of mustard gas surrogate on ZnO2/g-C3N4 composites: Effect of surface features synergy and day-night photocatalysis. <i>Applied Catalysis B: Environmental</i> , 2020 , 272, 119038	21.8	23
153	Exploring the effect of ultramicropore distribution on gravimetric capacitance of nanoporous carbons. <i>Electrochimica Acta</i> , 2018 , 275, 236-247	6.7	23
152	Alterations of S-doped porous carbon-rGO composites surface features upon CO2 adsorption at ambient conditions. <i>Carbon</i> , 2016 , 107, 501-509	10.4	23
151	Analysis of factors affecting visible and UV enhanced oxidation of dibenzothiophenes on sulfur-doped activated carbons. <i>Carbon</i> , 2013 , 62, 356-364	10.4	23
150	Metal-loaded carbonaceous adsorbents templated from porous clay heterostructures. <i>Microporous and Mesoporous Materials</i> , 2006 , 92, 47-55	5.3	23

149	Characterization of acidity of pillared clays by proton affinity distribution and DRIFT spectroscopy. Journal of the Chemical Society, Faraday Transactions, 1994 , 90, 3573-3578		23	
148	Effect of Ag containing (nano)particles on reactive adsorption of mustard gas surrogate on iron oxyhydroxide/graphite oxide composites under visible light irradiation. <i>Chemical Engineering Journal</i> , 2016 , 303, 123-136	14.7	23	
147	Mixed CuFe and ZnFe (hydr)oxides as reactive adsorbents of chemical warfare agent surrogates. Journal of Hazardous Materials, 2017 , 329, 141-149	12.8	22	
146	Alterations in the surface features of S-doped carbon and g-C3N4 photocatalysts in the presence of CO2 and water upon visible light exposure. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 16315-16325	13	22	
145	Effect of Visible-Light Exposure and Electrolyte Oxygen Content on the Capacitance of Sulfur-Doped Carbon. <i>ChemElectroChem</i> , 2014 , 1, 565-572	4.3	22	
144	Effect of the graphene phase presence in nanoporous S-doped carbon on photoactivity in UV and visible light. <i>Applied Catalysis B: Environmental</i> , 2014 , 147, 842-850	21.8	22	
143	Mustard Gas Surrogate Interactions with Modified Porous Carbon Fabrics: Effect of Oxidative Treatment. <i>Langmuir</i> , 2017 , 33, 11475-11483	4	22	
142	Interactions of NO2 with Zinc (Hydr)oxide/Graphene Phase Composites: Visible Light Enhanced Surface Reactivity. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 2527-2535	3.8	22	
141	Graphite oxide/AlZr polycation composites: Surface characterization and performance as adsorbents of ammonia. <i>Materials Chemistry and Physics</i> , 2009 , 117, 99-106	4.4	22	
140	Initial Heats of H(2)S Adsorption on Activated Carbons: Effect of Surface Features. <i>Journal of Colloid and Interface Science</i> , 1999 , 219, 327-332	9.3	22	
139	Sorption Properties of Carbon Composite Materials Formed from Layered Clay Minerals. <i>Clays and Clay Minerals</i> , 1994 , 42, 1-6	2.1	22	
138	Chemical and structural properties of clay minerals modified by inorganic and organic material. <i>Clay Minerals</i> , 1992 , 27, 435-444	1.3	22	
137	CaTiO3 perovskite in the framework of activated carbon and its effect on enhanced electrochemical capacitance. <i>Electrochimica Acta</i> , 2018 , 268, 73-81	6.7	21	
136	Nanoporous carbons as gas sensors: Exploring the surface sensitivity. <i>Carbon</i> , 2014 , 80, 183-192	10.4	21	
135	Insight into the role of the oxidized graphite precursor on the properties of copper-based MOF/graphite oxide composites. <i>Microporous and Mesoporous Materials</i> , 2013 , 179, 205-211	5.3	21	
134	Controllable atomistic graphene oxide model and its application in hydrogen sulfide removal. Journal of Chemical Physics, 2013 , 139, 194707	3.9	21	
133	Changes in surface chemistry of carbon materials upon electrochemical measurements and their effects on capacitance in acidic and neutral electrolytes. <i>ChemSusChem</i> , 2012 , 5, 2188-99	8.3	21	
132	Towards understanding reactive adsorption of small molecule toxic gases on carbonaceous materials. <i>Catalysis Today</i> , 2012 , 186, 20-28	5.3	21	

131	Template-free synthesis of silica ellipsoids. <i>Chemical Communications</i> , 2011 , 47, 7791-3	5.8	21
130	Tobacco waste/industrial sludge based desulfurization adsorbents: effect of phase interactions during pyrolysis on surface activity. <i>Environmental Science & Environmental Sc</i>	10.3	21
129	Silica P olyamine-Based Carbon Composite Adsorbents as Media for Effective Hydrogen Sulfide Adsorption/Oxidation. <i>Chemistry of Materials</i> , 2007 , 19, 2500-2511	9.6	21
128	Reactive adsorption of CEES on iron oxyhydroxide/(N-)graphite oxide composites under visible light exposure. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 17080-17090	13	20
127	Carbon Textiles Modified with Copper-Based Reactive Adsorbents as Efficient Media for Detoxification of Chemical Warfare Agents. <i>ACS Applied Materials & Detoxification of Chemical Warfare Agents</i> . <i>ACS Applied Materials & Detoxification of Chemical Warfare Agents.</i>	7 3 ·5	20
126	Role of surface heterogeneity in the removal of ammonia from air on micro/mesoporous activated carbons modified with molybdenum and tungtsen oxides. <i>Microporous and Mesoporous Materials</i> , 2009 , 118, 61-67	5.3	20
125	Study of regeneration of activated carbons used as H2S adsorbents in water treatment plants. <i>Journal of Environmental Management</i> , 2002 , 6, 303-311		20
124	Oxygen Electroreduction on Nanoporous Carbons: Textural Features vs Nitrogen and Boron Catalytic Centers. <i>ChemCatChem</i> , 2019 , 11, 851-860	5.2	20
123	Removal of hydrogen sulfide at ambient conditions on cadmium/GO-based composite adsorbents. Journal of Colloid and Interface Science, 2015, 448, 573-81	9.3	19
122	Desulfurization of Model Diesel Fuel on Activated Carbon Modified with Iron Oxyhydroxide Nanoparticles: Effect of tert-Butylbenzene and Naphthalene Concentrations. <i>Energy & Company States</i> , 2013, 27, 5380-5387	4.1	19
121	Reactive adsorption of penicillin on activated carbons. <i>Adsorption</i> , 2011 , 17, 421-429	2.6	19
120	Effects of surface chemistry on the reactive adsorption of hydrogen cyanide on activated carbons. <i>Carbon</i> , 2009 , 47, 2456-2465	10.4	19
119	Sodium on the Surface of Activated Carbons as a Factor Enhancing Reactive Adsorption of Dibenzothiophene. <i>Energy & Dibenzothiophene</i> .	4.1	19
118	Hydrotalcite-like structures as molecular containers for preparation of microporous carbons. <i>Applied Clay Science</i> , 1995 , 10, 177-186	5.2	19
117	Nanoporous Carbons: Looking Beyond Their Perception as Adsorbents, Catalyst Supports and Supercapacitors. <i>Chemical Record</i> , 2016 , 16, 205-18	6.6	19
116	Polyoxometalate hybrid catalyst for detection and photodecomposition of mustard gas surrogate vapors. <i>Applied Surface Science</i> , 2019 , 467-468, 428-438	6.7	19
115	Insight into the Mechanism of Oxygen Reduction Reaction on Micro/Mesoporous Carbons: Ultramicropores versus Nitrogen-Containing Catalytic Centers in Ordered Pore Structure. <i>ACS Applied Energy Materials</i> , 2019 , 2, 7412-7424	6.1	18
114	Mesoporous silica SBA-15 modified with copper as an efficient NO2 adsorbent at ambient conditions. <i>Journal of Colloid and Interface Science</i> , 2012 , 377, 347-54	9.3	18

(2006-2006)

113	Adsorption of Ethylmethylamine Vapor by Activated Carbon Filters. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 1441-1445	3.9	18	
112	Heterogeneity of adsorption energy of water, methanol and diethyl ether on activated carbons: effect of porosity and surface chemistry. <i>Physical Chemistry Chemical Physics</i> , 2003 , 5, 2096	3.6	18	
111	Sulfur-mediated photochemical energy harvesting in nanoporous carbons. <i>Carbon</i> , 2016 , 104, 253-259	10.4	18	
110	Ultramicropore-influenced mechanism of oxygen electroreduction on metal-free carbon catalysts. Journal of Materials Chemistry A, 2019 , 7, 27110-27123	13	18	
109	Evaluation of nitrogen- and sulfur-doped porous carbon textiles as electrode materials for flexible supercapacitors. <i>Electrochimica Acta</i> , 2019 , 305, 125-136	6.7	17	
108	Role of Heteroatoms in S,N-Codoped Nanoporous Carbon Materials in CO (Photo)electrochemical Reduction. <i>ChemSusChem</i> , 2018 , 11, 2987-2999	8.3	17	
107	Effect of silver nanoparticles deposited on micro/mesoporous activated carbons on retention of NO(x) at room temperature. <i>Journal of Colloid and Interface Science</i> , 2011 , 354, 331-40	9.3	17	
106	Surface Chemistry of Carbon Materials 2008 , 45-92		17	
105	Composite porous carbon textile with deposited barium titanate nanospheres as wearable protection medium against toxic vapors. <i>Chemical Engineering Journal</i> , 2020 , 384, 123280	14.7	17	
104	Impregnation of activated carbon by iron oxyhydroxide and its effect on arsenate removal. <i>Journal of Chemical Technology and Biotechnology</i> , 2013 , 88, 1058-1066	3.5	16	
103	Effect of increased basicity of activated carbon surface on valeric acid adsorption from aqueous solution activated carbon. <i>Physical Chemistry Chemical Physics</i> , 2003 , 5, 4892	3.6	16	
102	Pore structures of carbon-smectite nanocomposites. <i>Microporous Materials</i> , 1994 , 3, 177-184		16	
101	Photosensitivity of g-C3N4/S-doped carbon composites: study of surface stability upon exposure to CO2 and/or water in ambient light. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 24880-24891	13	15	
100	Effect of chemical heterogeneity on photoluminescence of graphite oxide treated with S-/N-containing modifiers. <i>Applied Surface Science</i> , 2015 , 332, 272-280	6.7	15	
99	Heterogeneity of Pillared Clays Determined by Adsorption of SF6 at Temperatures Near Ambient Langmuir, 1997 , 13, 1010-1015	4	15	
98	Analysis of Silica Surface Heterogeneity Using Butane and Butene Adsorption Data. <i>Journal of Colloid and Interface Science</i> , 1997 , 193, 127-31	9.3	15	
97	Development of surface porosity and catalytic activity in metal sludge/waste oil derived adsorbents: Effect of heat treatment. <i>Chemical Engineering Journal</i> , 2008 , 138, 155-165	14.7	15	
96	Highly mesoporous carbons obtained using a dynamic template method. <i>Microporous and Mesoporous Materials</i> , 2006 , 89, 315-324	5.3	15	

95	Exploring the options for the improvement of H2S adsorption on sludge derived adsorbents: Building the composite with porous carbons. <i>Journal of Cleaner Production</i> , 2020 , 249, 119412	10.3	15
94	Combination of alkalinity and porosity enhances formaldehyde adsorption on pig manure -derived composite adsorbents. <i>Microporous and Mesoporous Materials</i> , 2019 , 286, 155-162	5.3	14
93	Moisture insensitive adsorption of ammonia on resorcinol-formaldehyde resins. <i>Journal of Hazardous Materials</i> , 2016 , 305, 96-104	12.8	14
92	Interactions of water, methanol and diethyl ether molecules with the surface of oxidized activated carbon. <i>Molecular Physics</i> , 2002 , 100, 2041-2048	1.7	14
91	Nitrogen-containing activated carbon of improved electrochemical performance derived from cotton stalks using indirect chemical activation. <i>Journal of Colloid and Interface Science</i> , 2019 , 540, 285-	294	14
90	Desulfurization of Digester Gas on Industrial-Sludge-Derived Adsorbents. <i>Energy & Desulfurization of Digester Gas on Industrial-Sludge-Derived Adsorbents</i> . <i>Energy & Desulfurization of Digester Gas on Industrial-Sludge-Derived Adsorbents</i> . <i>Energy & Desulfurization of Digester Gas on Industrial-Sludge-Derived Adsorbents</i> .	4.1	13
89	Surface properties of porous carbons obtained from polystyrene-based polymers within inorganic templates: role of polymer chemistry and inorganic template pore structure. <i>Microporous and Mesoporous Materials</i> , 2007 , 100, 45-54	5.3	13
88	Study of Diethyl Ether Adsorption on Activated Carbons Using IGC at Finite Concentration. <i>Langmuir</i> , 2001 , 17, 4967-4972	4	13
87	Thermodynamic study of high-pressure adsorption of methane on activated carbons: The effect of oxidation on pore structure and adsorption energy heterogeneity. <i>Carbon</i> , 1992 , 30, 507-512	10.4	13
86	Oxygen reduction on chemically heterogeneous iron-containing nanoporous carbon: The effects of specific surface functionalities. <i>Microporous and Mesoporous Materials</i> , 2016 , 221, 137-149	5.3	12
85	Magnetic soot: Surface properties and application to remove oil contamination from water. <i>Journal of Environmental Chemical Engineering</i> , 2019 , 7, 103074	6.8	12
84	Analysis of the chemical and physical factors affecting reactive adsorption of ammonia on graphene/nanoporous carbon composites. <i>Carbon</i> , 2013 , 55, 176-184	10.4	12
83	Structural and optical characterization of Zn(OH)2 and its composites with graphite oxides. <i>Optics Letters</i> , 2013 , 38, 962-4	3	12
82	Adsorption of ammonia on graphite oxide/Al13 composites. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2010 , 353, 30-36	5.1	12
81	Changes in Acidity of Fe-Pillared/Delaminated Smectites on Heat Treatment. <i>Journal of Colloid and Interface Science</i> , 1997 , 191, 456-63	9.3	12
80	A study of ignition of metal impregnated carbons: the influence of oxygen content in the activated carbon matrix. <i>Journal of Colloid and Interface Science</i> , 2005 , 282, 102-8	9.3	12
79	Exploring resistance changes of porous carbon upon physical adsorption of VOCs. <i>Carbon</i> , 2019 , 146, 568-571	10.4	12
78	FeNi doped porous carbon as an efficient catalyst for oxygen evolution reaction. <i>Frontiers of Chemical Science and Engineering</i> , 2021 , 15, 279-287	4.5	12

77	Boosting the Photoactivity of Grafted Titania: Ultrasound-Driven Synthesis of a Multi-Phase Heterogeneous Nano-Architected Photocatalyst. <i>Advanced Functional Materials</i> , 2021 , 31, 2007115	15.6	12	
76	Detoxification of Chemical Warfare Agents 2018 ,		11	
75	Involvement of water and visible light in the enhancement in SO2 adsorption at ambient conditions on the surface of zinc (hydr)oxide/graphite oxide composites. <i>Chemical Engineering Journal</i> , 2013 , 223, 442-453	14.7	11	
74	Interactions of Arsine with Nanoporous Carbons: Role of Heteroatoms in the Oxidation Process at Ambient Conditions. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 6527-6533	3.8	11	
73	Role of oil derived carbonaceous phase in the performance of sewage sludge-based materials as media for desulfurizaton of digester gas. <i>Applied Surface Science</i> , 2008 , 254, 2385-2395	6.7	11	
72	Reactive removal of 2-chloroethyl ethyl sulfide vapors under visible light irradiation by cerium oxide modified highly porous zirconium (hydr) oxide. <i>Applied Surface Science</i> , 2016 , 390, 735-743	6.7	10	
71	On the photoactivity of S-doped nanoporous carbons: Importance of surface chemistry and porosity. <i>Chinese Journal of Catalysis</i> , 2014 , 35, 807-814	11.3	10	
70	Peculiar Properties of Mesoporous Synthetic Carbon/Graphene Phase Composites and their Effect on Supercapacitive Performance. <i>ChemSusChem</i> , 2015 , 8, 1955-65	8.3	10	
69	Reactive adsorption of NO2 at ambient conditions on iron-containing polymer-based porous carbons. <i>ChemSusChem</i> , 2011 , 4, 404-12	8.3	10	
68	Sewage Sludge/Metal Sludge/Waste Oil Composites as Catalysts for Desulfurization of Digester Gas. <i>Energy & Energy & Ene</i>	4.1	10	
67	Structural and adsorption properties of carbons synthesized within taeniolite matrices. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1995 , 91, 493-497		10	
66	Surface chemical heterogeneity of pillared hydrotalcites. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1996 , 92, 1243		10	
65	Building MOF Nanocomposites with Oxidized Graphitic Carbon Nitride Nanospheres: The Effect of Framework Geometry on the Structural Heterogeneity. <i>Molecules</i> , 2019 , 24,	4.8	10	
64	Robust graphene-based monoliths of homogeneous ultramicroporosity. <i>Carbon</i> , 2015 , 87, 87-97	10.4	9	
63	Complexity of ammonia interactions on activated carbons modified with V2O5. <i>Journal of Colloid and Interface Science</i> , 2008 , 325, 301-8	9.3	9	
62	Study of Nanocomposites Obtained by Carbonization of Different Organic Precursors within Taeniolite Matrices. <i>Clays and Clay Minerals</i> , 1996 , 44, 237-243	2.1	9	
61	Ropore structure development in poly(sodium-4-styrenesulfonate) derived carbons. <i>Carbon</i> , 1995 , 33, 1047-1052	10.4	9	
60	Electrodeposited P Co nanoparticles in deep eutectic solvents and their performance in water splitting. <i>International Journal of Hydrogen Energy</i> , 2018 , 43, 10448-10457	6.7	9	

59	Band gap energies of solar micro/meso-porous composites of zinc (hydr)oxide with graphite oxides. Journal of Applied Physics, 2013 , 114, 043522	2.5	8
58	Removal of dibenzothiophenes from model diesel fuel on sulfur rich activated carbons. <i>Applied Catalysis B: Environmental</i> , 2011 ,	21.8	8
57	A study of the activity of chemical groups on carbonaceous and model surfaces by infinite dilution chromatography. <i>Chromatographia</i> , 1992 , 33, 441-444	2.1	8
56	Scrolled titanate nanosheet composites with reduced graphite oxide for photocatalytic and adsorptive removal of toxic vapors. <i>Chemical Engineering Journal</i> , 2021 , 415, 128907	14.7	8
55	TiO/S-Doped Carbons Hybrids: Analysis of Their Interfacial and Surface Features. <i>Molecules</i> , 2019 , 24,	4.8	7
54	Carbon phase-graphite oxide composites based on solid state interactions between the components: Importance of surface chemistry and microstructure. <i>Carbon</i> , 2015 , 95, 580-588	10.4	7
53	Chemically heterogeneous carbon dots enhanced cholesterol detection by MALDI TOF mass spectrometry. <i>Journal of Colloid and Interface Science</i> , 2021 , 591, 373-383	9.3	7
52	Exploring the Aspect of Carbon Nanopores. <i>Nanomaterials</i> , 2021 , 11,	5.4	7
51	Effect of the Incorporation of Functionalized Cellulose Nanocrystals into UiO-66 on Composite Porosity and Surface Heterogeneity Alterations. <i>Advanced Materials Interfaces</i> , 2020 , 7, 1902098	4.6	6
50	Copper-Modified Activated Carbons as Adsorbents of NO under Ambient Conditions. <i>Adsorption Science and Technology</i> , 2011 , 29, 831-845	3.6	6
49	Removal of Inorganic Gases and VOCS on Activated Carbons 2008 , 533-564		6
48	Support features govern the properties of the active phase and the performance of bifunctional ZnFe2O4-based H2S adsorbents. <i>Carbon</i> , 2020 , 169, 327-337	10.4	6
47	Pyrolyzed biosolid surface features promote a highly efficient oxygen reduction reaction. <i>Green Chemistry</i> , 2020 , 22, 7858-7870	10	6
46	Alternative view of oxygen reduction on porous carbon electrocatalysts: the substance of complex oxygen-surface interactions. <i>IScience</i> , 2021 , 24, 102216	6.1	6
45	CARBONACEOUS MATERIALS AS DESULFURIZATION MEDIA 2006 , 145-164		6
44	Exploring the effects of surface chemistry on photosensitivity and stability of modified porous carbon textiles. <i>Carbon</i> , 2018 , 131, 1-9	10.4	5
43	Effects of carbon phase deposition in silica gel pores on NO2 reactive adsorption at ambient conditions on carbon/silica composites. <i>Langmuir</i> , 2013 , 29, 6895-902	4	5
42	Time-resolved photoluminescence of Zn(OH)2 and its composites with graphite oxides. <i>Optics Letters</i> , 2013 , 38, 2227-9	3	5

[2021-1996]

41	of Physical Chemistry, 1996 , 100, 15569-15574		5	
40	Adsorption energy and structural heterogeneity of activated carbons. <i>Studies in Surface Science and Catalysis</i> , 1994 , 87, 679-688	1.8	5	
39	Ni-doped hierarchical porous carbon with a p/n-junction promotes electrochemical water splitting. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 17493-17503	6.7	4	
38	Carbon Coated Silica Doped With Cerium/Zirconium Mixed Oxides as NO2 Adsorbent at Ambient Conditions. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 8982-8992	3.8	4	
37	Molecular Modeling of Selective Adsorption from Mixtures. <i>Materials Research Society Symposia Proceedings</i> , 1997 , 497, 231		4	
36	Enhancing the gas adsorption capacities of UiO-66 by nanographite addition. <i>Microporous and Mesoporous Materials</i> , 2020 , 309, 110571	5.3	4	
35	Proposing an unbiased oxygen reduction reaction onset potential determination by using a Savitzky-Golay differentiation procedure. <i>Journal of Colloid and Interface Science</i> , 2021 , 586, 597-600	9.3	4	
34	The effect of ZnFe2O4/activated carbon adsorbent photocatalytic activity on gas-phase desulfurization. <i>Chemical Engineering Journal</i> , 2021 , 423, 130255	14.7	4	
33	Graphite Oxide Nanocomposites for Air Stream Desulfurization 2019 , 1-24		3	
32	Surfactant-modified biosolid-derived materials as efficient H2S removal media: Synergistic effects of carbon phase properties and inorganic phase chemistry on reactive adsorption. <i>Chemical Engineering Journal</i> , 2020 , 401, 125986	14.7	3	
31	Hybrid solar cells of micro/mesoporous Zn(OH)2 and its graphite composites sensitized by CdSe quantum dots. <i>Journal of Photonics for Energy</i> , 2014 , 4, 043098	1.2	3	
30	The Role of Carbon on CopperCarbon Composites for the Electrooxidation of Alcohols in an Alkaline Medium. <i>Journal of Carbon Research</i> , 2017 , 3, 36	3.3	3	
29	Efficient Air Desulfurization Catalysts Derived from Pig Manure Liquefaction Char. <i>Journal of Carbon Research</i> , 2017 , 3, 37	3.3	3	
28	Effect of Mineral Host on Surface Acidity of Hydroxy-Cr Intercalated Clays. <i>Clays and Clay Minerals</i> , 1997 , 45, 110-113	2.1	3	
27	Predictions of H2S Breakthrough Capacity of Activated Carbons at Low Concentrations of Hydrogen Sulfide. <i>Adsorption</i> , 2005 , 11, 461-466	2.6	3	
26	A Study of Acidity and Structure of Hydroxy-Cr Intercalated Bentonites. <i>Journal of Colloid and Interface Science</i> , 1996 , 182, 570-577	9.3	3	
25	Engineering heterostructured Ni@Ni(OH)2 core-shell nanomaterials for synergistically enhanced water electrolysis. <i>Green Energy and Environment</i> , 2020 ,	5.7	3	
24	Inorganic matter in rice husk derived carbon and its effect on the capacitive performance. <i>Journal of Energy Chemistry</i> , 2021 , 57, 639-649	12	3	

23	Toxic gas sensing on nanoporous carbons. <i>Adsorption</i> , 2017 , 23, 271-280	2.6	2
22	Activated carbon with heteroatoms from organic salt for hydrogen evolution reaction. <i>Microporous and Mesoporous Materials</i> , 2020 , 297, 110033	5.3	2
21	Changes in the acidic properties of pillared taeniolites on heat treatment or alkene decomposition. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 4631-4635		2
20	EFFECT OF SURFACE CHEMISTRY ON THE PERFORMANCE OF UNIMPREGNATED ACTIVATED CARBONS AS H2S ADSORBENTS 2000 ,		2
19	Thermodynamically Consistent Analysis of Silica Surface Heterogeneity Using Alkane and Alkene Adsorption Isotherms. <i>Kluwer International Series in Engineering and Computer Science</i> , 1996 , 417-424		2
18	Spent Coffee-Based Activated Carbons 2015 , 311-317		1
17	Time-resolved fluorescence and ultrafast energy transfer in a zinc (hydr)oxide@raphite oxide mesoporous composite. <i>Journal of Photonics for Energy</i> , 2015 , 5, 053084	1.2	1
16	Utilization of Third-Stage Waste from a Rice Production for Removal of H2S, NO2 and SO2 from Air. <i>Adsorption Science and Technology</i> , 2013 , 31, 199-212	3.6	1
15	Removal of hydrogen sulphide on sewage sludge/industrial sludge based carbonaceous adsorbents. <i>International Journal of Environment and Waste Management</i> , 2009 , 3, 308	0.9	1
14	Revealing the impact of small pores on oxygen reduction on carbon electrocatalysts: A journey through recent findings. <i>Carbon</i> , 2021 , 188, 289-289	10.4	1
13	Oxygen adsorption in pores promotes its reduction on metal-free carbon catalysts: A case of carbon blacks. <i>Carbon</i> , 2022 , 189, 230-239	10.4	1
12	Nanoporous carbon materials: from char to sophisticated 3-D graphene-like structures 2020 , 45-64		1
11	Exploring the effect of surface chemistry in carbon nanopores on melting behavior of water. <i>Carbon</i> , 2021 , 185, 252-263	10.4	1
10	Analyzing the effect of nitrogen/sulfur groupsIdensity ratio in porous carbons on the efficiency of CO2 electrochemical reduction. <i>Applied Surface Science</i> , 2021 , 569, 151066	6.7	1
9	Effect of amine type on acidic toxic gas adsorption at ambient conditions on modified CuBTC. Journal of Environmental Chemical Engineering, 2022 , 107261	6.8	0
8	New Approaches in the Detoxification of CWAs 2018 , 37-123		O
7	Biochemical changes in cancer cells induced by photoactive nanosystem based on carbon dots loaded with Ru-complex <i>Chemico-Biological Interactions</i> , 2022 , 360, 109950	5	О
6	Path Towards Future Research 2018 , 125-144		

LIST OF PUBLICATIONS

5	The effects of fabrication temperature on current-voltage characteristics and energy efficiencies of quantum dot sensitized ZnOH-GO hybrid solar cells. <i>Journal of Applied Physics</i> , 2014 , 116, 173102	2.5
4	Current Protection Against CWAs 2018 , 33-36	
3	Beyond Adsorption: The Effect of Sulfur Doping on Emerging Applications of Nanoporous Carbons. <i>Eurasian Chemico-Technological Journal</i> , 2017 , 18, 233	0.8
2	Porous Carbons as Oxygen Reduction Electrocatalysts. <i>Engineering Materials</i> , 2021 , 41-77	0.4
1	Complexity of Biosolid-Derived Electrocatalysts Grants Their Excellent Performance in Oxygen Reduction Reaction. ACS Applied Energy Materials, 2022, 5, 3514-3524	6.1