
JérÃ'me Fortage

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8460816/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A pâ€Type NiOâ€Based Dyeâ€Sensitized Solar Cell with an Openâ€Circuit Voltage of 0.35â€V. Angewandte Che International Edition, 2009, 48, 4402-4405.	emie - 13.8	257
2	Improved Photon-to-Current Conversion Efficiency with a Nanoporous p-Type NiO Electrode by the Use of a Sensitizer-Acceptor Dyad. Journal of Physical Chemistry C, 2008, 112, 1721-1728.	3.1	173
3	Efficient and Limiting Reactions in Aqueous Light-Induced Hydrogen Evolution Systems using Molecular Catalysts and Quantum Dots. Journal of the American Chemical Society, 2014, 136, 7655-7661.	13.7	131
4	Efficient photocatalytic hydrogen production in water using a cobalt(iii) tetraaza-macrocyclic catalyst: electrochemical generation of the low-valent Co(i) species and its reactivity toward proton reduction. Physical Chemistry Chemical Physics, 2013, 15, 17544.	2.8	106
5	Role of the Triiodide/Iodide Redox Couple in Dye Regeneration in p-Type Dye-Sensitized Solar Cells. Langmuir, 2012, 28, 6485-6493.	3.5	92
6	Photo-induced redox catalysis for proton reduction to hydrogen with homogeneous molecular systems using rhodium-based catalysts. Coordination Chemistry Reviews, 2015, 304-305, 20-37.	18.8	87
7	Synthesis of new perylene imide dyes and their photovoltaic performances in nanocrystalline TiO2 dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 197, 156-169.	3.9	84
8	An Efficient Ru ^{II} –Rh ^{III} –Ru ^{II} Polypyridyl Photocatalyst for Visibleâ€Lightâ€Driven Hydrogen Production in Aqueous Solution. Angewandte Chemie - International Edition, 2014, 53, 1654-1658.	13.8	82
9	Challenging the [Ru(bpy) ₃] ²⁺ Photosensitizer with a Triazatriangulenium Robust Organic Dye for Visible-Light-Driven Hydrogen Production in Water. ACS Catalysis, 2018, 8, 3792-3802.	11.2	77
10	Cadmium-free CuInS ₂ /ZnS quantum dots as efficient and robust photosensitizers in combination with a molecular catalyst for visible light-driven H ₂ production in water. Energy and Environmental Science, 2018, 11, 1752-1761.	30.8	76
11	Long-Lived Charge Separated State in NiO-Based p-Type Dye-Sensitized Solar Cells with Simple Cyclometalated Iridium Complexes. Journal of Physical Chemistry Letters, 2014, 5, 2254-2258.	4.6	73
12	Manganese-calcium/strontium heterometallic compounds and their relevance for the oxygen-evolving center of photosystem II. Coordination Chemistry Reviews, 2016, 319, 1-24.	18.8	66
13	Designing Multifunctional Expanded Pyridiniums: Properties of Branched and Fused Head-to-Tail Bipyridiniums. Journal of the American Chemical Society, 2010, 132, 16700-16713.	13.7	65
14	Ultrafast recombination for NiO sensitized with a series of perylene imide sensitizers exhibiting Marcus normal behaviour. Chemical Communications, 2012, 48, 678-680.	4.1	57
15	[Rh ^{III} (dmbpy) ₂ Cl ₂] ⁺ as a Highly Efficient Catalyst for Visibleâ€Lightâ€Driven Hydrogen Production in Pure Water: Comparison with Other Rhodium Catalysts. Chemistry - A European Journal, 2013, 19, 782-792.	3.3	56
16	Single‣tep Electron Transfer on the Nanometer Scale: Ultraâ€Fast Charge Shift in Strongly Coupled Zinc Porphyrin–Gold Porphyrin Dyads. Chemistry - A European Journal, 2008, 14, 3467-3480.	3.3	54
17	Strongly coupled zinc phthalocyanine–tin porphyrin dyad performing ultra-fast single step charge separation over a 34 à distance. Chemical Communications, 2007, , 4629.	4.1	47
18	Synthesis, Characterization, and Photocatalytic H ₂ -Evolving Activity of a Family of [Co(N4Py)(X)] ^{<i>n</i>+} Complexes in Aqueous Solution. Inorganic Chemistry, 2016, 55, 4564-4581.	4.0	47

Jérôme Fortage

#	Article	IF	CITATIONS
19	Expanded Pyridiniums: Bisâ€cyclization of Branched Pyridiniums into Their Fused Polycyclic and Positively Charged Derivatives—Assessing the Impact of Pericondensation on Structural, Electrochemical, Electronic, and Photophysical Features. Chemistry - A European Journal, 2010, 16, 11047-11063.	3.3	46
20	Visible Light-Driven Electron Transfer from a Dye-Sensitized <i>p</i> -Type NiO Photocathode to a Molecular Catalyst in Solution: Toward NiO-Based Photoelectrochemical Devices for Solar Hydrogen Production. Journal of Physical Chemistry C, 2015, 119, 5806-5818.	3.1	46
21	Polypyrrole-Ru(2,2′-bipyridine) ₃ ²⁺ /MoS _{<i>x</i>} Structured Composite Film As a Photocathode for the Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2015, 7, 4476-4480.	8.0	40
22	Long-Range Electron Transfer in Zinc-Phthalocyanine-Oligo(Phenylene-ethynylene)-Based Donor-Bridge-Acceptor Dyads. Inorganic Chemistry, 2012, 51, 11500-11512.	4.0	37
23	Chargeâ€Transfer State and Large First Hyperpolarizability Constant in a Highly Electronically Coupled Zinc and Gold Porphyrin Dyad. Chemistry - A European Journal, 2009, 15, 9058-9067.	3.3	36
24	Single-Step versus Stepwise Two-Electron Reduction of Polyarylpyridiniums: Insights from the Steric Switching of Redox Potential Compression. Journal of the American Chemical Society, 2012, 134, 2691-2705.	13.7	30
25	Cobalt(II) Pentaaza-Macrocyclic Schiff Base Complex as Catalyst for Light-Driven Hydrogen Evolution in Water: Electrochemical Generation and Theoretical Investigation of the One-Electron Reduced Species. Inorganic Chemistry, 2019, 58, 9043-9056.	4.0	29
26	Hybrid photoanodes for water oxidation combining a molecular photosensitizer with a metal oxide oxygen-evolving catalyst. Sustainable Energy and Fuels, 2020, 4, 31-49.	4.9	28
27	Molecular Dyads of Ruthenium(II)– or Osmium(II)–Bis(terpyridine) Chromophores and Expanded Pyridinium Acceptors: Equilibration between MLCT and Charge-Separated Excited States. Inorganic Chemistry, 2013, 52, 11944-11955.	4.0	26
28	Very Fast Single-Step Photoinduced Charge Separation in Zinc Porphyrin Bridged to a Gold Porphyrin by a Bisethynyl Quaterthiophene. Inorganic Chemistry, 2009, 48, 518-526.	4.0	25
29	Photoinduced Electron Transfer in Os(terpyridine)-biphenylene-(bi)pyridinium Assemblies. Inorganic Chemistry, 2012, 51, 5342-5352.	4.0	25
30	Electrochemical Generation and Spectroscopic Characterization of the Key Rhodium(III) Hydride Intermediates of Rhodium Poly(bipyridyl) H ₂ -Evolving Catalysts. Inorganic Chemistry, 2018, 57, 11225-11239.	4.0	21
31	Cobalt(III) tetraaza-macrocyclic complexes as efficient catalyst for photoinduced hydrogen production in water: Theoretical investigation of the electronic structure of the reduced species and mechanistic insight. Journal of Photochemistry and Photobiology B: Biology, 2015, 152, 82-94.	3.8	20
32	Nickel oxide–polypyrrole nanocomposite electrode materials for electrocatalytic water oxidation. Catalysis Science and Technology, 2018, 8, 4030-4043.	4.1	20
33	A computational mechanistic investigation of hydrogen production in water using the [RhIII(dmbpy)2Cl2]+/[RuII(bpy)3]2+/ascorbic acid photocatalytic system. Physical Chemistry Chemical Physics, 2015, 17, 10497-10509.	2.8	19
34	Tictoid Expanded Pyridiniums: Assessing Structural, Electrochemical, Electronic, and Photophysical Features. Journal of Physical Chemistry A, 2012, 116, 7880-7891.	2.5	17
35	Synthesis, structure, spectroscopy and reactivity of new heterotrinuclear water oxidation catalysts. Chemical Science, 2016, 7, 3304-3312.	7.4	17
36	Calcium and heterometallic manganese–calcium complexes supported by tripodal pyridine-carboxylate ligands: structural, EPR and theoretical investigations. Dalton Transactions, 2015, 44, 12757-12770.	3.3	15

Jérôme Fortage

#	Article	IF	CITATIONS
37	Extremely long-distance electron transfer in porphyrin or phthalocyanine systems directly functionalized by an oligo(phenyleneethynylene) spacer. Comptes Rendus Chimie, 2009, 12, 437-449.	0.5	14
38	Electrophotocatalysis: Cyclic Voltammetry as an Analytical Tool. Journal of Physical Chemistry Letters, 2020, 11, 6097-6104.	4.6	14
39	Selenospiropyrans incorporating appended pyrene chromophores. Tetrahedron Letters, 2008, 49, 4292-4295.	1.4	10
	Seven Reversible Redox Processes in a Self-Assembled Cobalt Pentanuclear Bis(triple-stranded) Tj ETQq0 0 0 rgB1	Overlock	2 10 Tf 50 63
40	Co ^I Co ^{II} ₄ , Co ^{II} ₅ , and Co ^{II} ₃ Co ^{III} ₂ Redox States. Inorganic Chemistry, 2020,	4.0	8
41	59, 9196-9205. Visibleâ€Lightâ€Driven Generation of Highâ€Valent Oxoâ€Bridged Dinuclear and Tetranuclear Manganese Terpyridine Entities Linked to Photoactive Ruthenium Units of Relevance to Photosystem II. European Journal of Inorganic Chemistry, 2012, 2012, 5485-5499.	2.0	6
42	Photoinduced Catalysis of Redox Reactions. Turnover Numbers, Turnover Frequency, and Limiting Processes: Kinetic Analysis and Application to Light-Driven Hydrogen Production. ACS Catalysis, 2022, 12, 6246-6254.	11.2	6
43	Extension of the charge separated-state lifetime by supramolecular association of a tetrathiafulvaleneelectron donor to a zinc/gold bisporphyrin. Dalton Transactions, 2010, 39, 1450-1452.	3.3	5
44	A cobalt oxide–polypyrrole nanocomposite as an efficient and stable electrode material for electrocatalytic water oxidation. Sustainable Energy and Fuels, 2021, 5, 4710-4723.	4.9	5
45	Self-Assembled Heterometallic Complexes by Incorporation of Calcium or Strontium Ion into a Manganese(II) 12-Metallacrown-3 Framework Supported by a Tripodal Ligand with Pyridine-Carboxylate Motifs: Stability in Their Manganese(III) Oxidized Form. Inorganic Chemistry, 2021, 60, 7922-7936.	4.0	2
46	Multireversible Redox Processes in a Selfâ€Assembled Nickel Pentanuclear Bis(Tripleâ€stranded Helicate): Structural and Spectroscopic Characterizations in the Ni II 5 and Ni I Ni II 4 Redox States. ChemElectroChem, 2021, 8, 2912-2920.	3.4	1