Lei Meng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8460720/publications.pdf

Version: 2024-02-01

		567281	940533
16	1,987	15	16
papers	1,987 citations	h-index	g-index
17	17	17	1847
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Mussel-Inspired Cellulose Nanocomposite Tough Hydrogels with Synergistic Self-Healing, Adhesive, and Strain-Sensitive Properties. Chemistry of Materials, 2018, 30, 3110-3121.	6.7	627
2	High-Strength, Self-Adhesive, and Strain-Sensitive Chitosan/Poly(acrylic acid) Double-Network Nanocomposite Hydrogels Fabricated by Salt-Soaking Strategy for Flexible Sensors. ACS Applied Materials & Diterraces, 2019, 11, 39228-39237.	8.0	228
3	Mimicking Dynamic Adhesiveness and Strain-Stiffening Behavior of Biological Tissues in Tough and Self-Healable Cellulose Nanocomposite Hydrogels. ACS Applied Materials & Samp; Interfaces, 2019, 11, 5885-5895.	8.0	171
4	Recent Progress in Natural Biopolymers Conductive Hydrogels for Flexible Wearable Sensors and Energy Devices: Materials, Structures, and Performance. ACS Applied Bio Materials, 2021, 4, 85-121.	4.6	169
5	Tannic Acid–Silver Dual Catalysis Induced Rapid Polymerization of Conductive Hydrogel Sensors with Excellent Stretchability, Self-Adhesion, and Strain-Sensitivity Properties. ACS Applied Materials & Discrete Interfaces, 2020, 12, 56509-56521.	8.0	161
6	Engineering Self-Adhesive Polyzwitterionic Hydrogel Electrolytes for Flexible Zinc-Ion Hybrid Capacitors with Superior Low-Temperature Adaptability. ACS Nano, 2021, 15, 18469-18482.	14.6	145
7	Ultrafast Fabrication of Lignin-Encapsulated Silica Nanoparticles Reinforced Conductive Hydrogels with High Elasticity and Self-Adhesion for Strain Sensors. Chemistry of Materials, 2022, 34, 5258-5272.	6.7	85
8	Autonomous Self-Healing Silk Fibroin Injectable Hydrogels Formed via Surfactant-Free Hydrophobic Association. ACS Applied Materials & Samp; Interfaces, 2020, 12, 1628-1639.	8.0	80
9	An integrated self-healable and robust conductive hydrogel for dynamically self-adhesive and highly conformable electronic skin. Journal of Materials Chemistry C, 2019, 7, 15208-15218.	5.5	67
10	Adhesive Ionohydrogels Based on Ionic Liquid/Water Binary Solvents with Freezing Tolerance for Flexible Ionotronic Devices. Chemistry of Materials, 2022, 34, 1065-1077.	6.7	66
11	Low-Temperature tolerance and conformal adhesion zwitterionic hydrogels as electronic skin for strain and temperature responsiveness. Chemical Engineering Journal, 2022, 431, 133782.	12.7	57
12	Emerging cellulose-derived materials: a promising platform for the design of flexible wearable sensors toward health and environment monitoring. Materials Chemistry Frontiers, 2021, 5, 2051-2091.	5.9	54
13	Ionically Cross-Linked Silk Microfibers/Alginate Tough Composite Hydrogels with Hierarchical Structures. ACS Sustainable Chemistry and Engineering, 2018, 6, 16788-16796.	6.7	26
14	Strain Rate-Dependent Viscoelasticity and Fracture Mechanics of Cellulose Nanofibril Composite Hydrogels. Langmuir, 2019, 35, 10542-10550.	3.5	23
15	Fabrication of Anisotropic Silk Fibroin-Cellulose Nanocrystals Cryogels with Tunable Mechanical Properties, Rapid Swelling, and Structural Recoverability via a Directional-Freezing Strategy. ACS Sustainable Chemistry and Engineering, 2021, 9, 12274-12285.	6.7	16
16	Physically Cross-Linked Silk Hydrogels with High Solid Content and Excellent Mechanical Properties via a Reverse Dialysis Concentrated Procedure. ACS Sustainable Chemistry and Engineering, 2019, 7, 13324-13332.	6.7	12