Lida Mohammadi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8460700/publications.pdf

Version: 2024-02-01

39 papers 2,396 citations

218677 26 h-index 289244 40 g-index

42 all docs 42 docs citations

times ranked

42

1986 citing authors

#	Article	IF	CITATIONS
1	Green synthesis and characterization of silver nanoparticles using Fritillaria flower extract and their antibacterial activity against some human pathogens. Polyhedron, 2019, 158, 8-14.	2.2	232
2	Preparation of polydopamine sulfamic acid-functionalized magnetic Fe ₃ O ₄ nanoparticles with a core/shell nanostructure as heterogeneous and recyclable nanocatalysts for the acetylation of alcohols, phenols, amines and thiols under solvent-free conditions. Green Chemistry, 2016, 18, 6337-6348.	9.0	140
3	Pd(II)/Pd(0) anchored to magnetic nanoparticles (Fe3O4) modified with biguanidine-chitosan polymer as a novel nanocatalyst for Suzuki-Miyaura coupling reactions. International Journal of Biological Macromolecules, 2018, 113, 186-194.	7.5	132
4	In situ green synthesis of Ag nanoparticles on herbal tea extract (Stachys lavandulifolia)-modified magnetic iron oxide nanoparticles as antibacterial agent and their 4-nitrophenol catalytic reduction activity. Materials Science and Engineering C, 2018, 90, 57-66.	7.3	127
5	Silver nanoparticles decorated on thiol-modified magnetite nanoparticles (Fe3O4/SiO2-Pr-S-Ag) as a recyclable nanocatalyst for degradation of organic dyes. Materials Science and Engineering C, 2019, 97, 624-631.	7.3	119
6	In situ biogenic synthesis of Pd nanoparticles over reduced graphene oxide by using a plant extract (Thymbra spicata) and its catalytic evaluation towards cyanation of aryl halides. Materials Science and Engineering C, 2019, 104, 109919.	7.3	104
7	Sonochemical in situ immobilization of Pd nanoparticles on green tea extract coated Fe3O4 nanoparticles: An efficient and magnetically recyclable nanocatalyst for synthesis of biphenyl compounds under ultrasound irradiations. Materials Science and Engineering C, 2019, 98, 584-593.	7.3	102
8	Green and effective route for the synthesis of monodispersed palladium nanoparticles using herbal tea extract (<i>Stachys lavandulifolia</i>) as reductant, stabilizer and capping agent, and their application as homogeneous and reusable catalyst in Suzuki coupling reactions in water. Applied Organometallic Chemistry, 2015, 29, 26-32.	3.5	97
9	In situ immobilized palladium nanoparticles on surface of poly-methyldopa coated-magnetic nanoparticles (Fe3O4@PMDA/Pd): A magnetically recyclable nanocatalyst for cyanation of aryl halides with K4[Fe(CN)6]. Journal of Catalysis, 2018, 365, 204-212.	6.2	96
10	In Situ Immobilized Silver Nanoparticles on <i>Rubia tinctorum</i> Extract-Coated Ultrasmall Iron Oxide Nanoparticles: An Efficient Nanocatalyst with Magnetic Recyclability for Synthesis of Propargylamines by A ³ Coupling Reaction. ACS Omega, 2019, 4, 13991-14003.	3.5	91
11	Green synthesis of palladium nanoparticles using <i>Pistacia atlantica kurdica</i> gum and their catalytic performance in Mizoroki–Heck and Suzuki–Miyaura coupling reactions in aqueous solutions. Applied Organometallic Chemistry, 2015, 29, 517-523.	3.5	86
12	Palladium supported on diaminoglyoximeâ€functionalized Fe ₃ O ₄ nanoparticles as a magnetically separable nanocatalyst in Heck coupling reaction. Applied Organometallic Chemistry, 2015, 29, 825-828.	3.5	79
13	Immobilization of palladium nanoparticles on Metformin-functionalized graphene oxide as a heterogeneous and recyclable nanocatalyst for Suzuki coupling reactions and reduction of 4-nitrophenol. Polyhedron, 2019, 158, 414-422.	2.2	78
14	Green synthesis and characterization of monodispersed silver nanoparticles obtained using oak fruit bark extract and their antibacterial activity. Applied Organometallic Chemistry, 2016, 30, 387-391.	3.5	75
15	Catalytic reduction of 4-nitrophenol over Ag nanoparticles immobilized on Stachys lavandulifolia extract-modified multi walled carbon nanotubes. Polyhedron, 2019, 157, 232-240.	2.2	72
16	Buchwald–Hartwig C–N cross coupling reactions catalyzed by palladium nanoparticles immobilized on thio modified-multi walled carbon nanotubes as heterogeneous and recyclable nanocatalyst. Materials Science and Engineering C, 2019, 96, 310-318.	7.3	71
17	A mesoporous SBA-15 silica catalyst functionalized with phenylsulfonic acid groups (SBA-15-Ph-SO ₃ H) as a novel hydrophobic nanoreactor solid acid catalyst for a one-pot three-component synthesis of 2H-indazolo[2,1-b]phthalazine-triones and triazolo[1.2-a]indazole-triones. RSC Advances. 2015. 5. 68523-68530.	3.6	66
18	Biosynthesis of CuO nanoparticles using Rosa canina fruit extract as a recyclable and heterogeneous nanocatalyst for C-N Ullmann coupling reactions. Materials Chemistry and Physics, 2018, 214, 527-532.	4.0	65

#	Article	IF	CITATIONS
19	Modified magnetic nanoparticles by PEG-400-immobilized Ag nanoparticles (Fe ₃ O ₄ @PEG–Ag) as a core/shell nanocomposite and evaluation of its antimicrobial activity. International Journal of Nanomedicine, 2018, Volume 13, 3965-3973.	6.7	57
20	Biosynthesis of gold nanoparticles using $\langle i \rangle$ Allium noeanum $\langle i \rangle$ Reut. ex Regel leaves aqueous extract; characterization and analysis of their cytotoxicity, antioxidant, and antibacterial properties. Applied Organometallic Chemistry, 2019, 33, e5189.	3.5	47
21	Green synthesis of Pd nanoparticles supported on reduced graphene oxide, using the extract of <i>Rosa canina</i> fruit, and their use as recyclable and heterogeneous nanocatalysts for the degradation of dye pollutants in water. RSC Advances, 2018, 8, 21020-21028.	3.6	46
22	Synthesis, characterization, and evaluation of cytotoxicity, antioxidant, antifungal, antibacterial, and cutaneous wound healing effects of copper nanoparticles using the aqueous extract of Strawberry fruit and I-Ascorbic acid. Polyhedron, 2020, 180, 114425.	2.2	44
23	CuCl heterogenized on metformine-modified multi walled carbon nanotubes as a recyclable nanocatalyst for Ullmann-type C–O and C–N coupling reactions. New Journal of Chemistry, 2018, 42, 2782-2789.	2.8	41
24	Green synthesis of silver nanoparticles based on oil-water interface method with essential oil of orange peel and its application as nanocatalyst for A3 coupling. Materials Science and Engineering C, 2019, 105, 110031.	7.3	38
25	Highly Efficient Method for Synthesis of Bis(Indolyl)Methanes Catalyzed by FeCl _{3â^'} based Ionic Liquid. Journal of the Chinese Chemical Society, 2009, 56, 240-245.	1.4	34
26	Biosynthesis of the silver nanoparticles on the graphene oxide's surface using Pistacia atlantica leaves extract and its antibacterial activity against some human pathogens. Polyhedron, 2019, 161, 338-345.	2.2	33
27	Biosynthesis and chemical characterization of polydopamineâ€capped silver nanoparticles for the treatment of acute myeloid leukemia in comparison to doxorubicin in a leukemic mouse model. Applied Organometallic Chemistry, 2020, 34, e5277.	3.5	26
28	Application of biosynthesized palladium nanoparticles (Pd NPs) on ⟨scp⟩⟨i⟩Rosa canina⟨ i⟩⟨ scp⟩⟨i⟩fruit⟨ i⟩ extractâ€modified graphene oxide as heterogeneous nanocatalyst for cyanation of aryl halides. Applied Organometallic Chemistry, 2019, 33, e5103.	3.5	24
29	Preparation and synthesis a new chemotherapeutic drug of silver nanoparticleâ€chitosan composite; Chemical characterization and analysis of their antioxidant, cytotoxicity, and antiâ€acute myeloid leukemia effects in comparison to Daunorubicin in a leukemic mouse model. Applied Organometallic Chemistry, 2020, 34, e5274.	3.5	23
30	Green synthesis of Au nanoparticles using an aqueous extract of Stachys lavandulifolia and their catalytic performance for alkyne/aldehyde/amine A3coupling reactions. RSC Advances, 2018, 8, 38186-38195.	3.6	22
31	CuCl2 anchored on polydopamine coated-magnetic nanoparticles (Fe3O4@PDA/Cu(II)): Preparation, characterization and evaluation of its cytotoxicity, antioxidant, antibacterial, and antifungal properties. Polyhedron, 2020, 177, 114327.	2.2	21
32	Application of copper nanoparticles containing natural compounds in the treatment of bacterial and fungal diseases. Applied Organometallic Chemistry, 2020, 34, e5465.	3.5	21
33	Palladium nanoparticles immobilized over <i>Strawberry</i> fruit extract coated Fe ₃ O ₄ NPs: A magnetic reusable nanocatalyst for Suzukiâ€Miyaura coupling reactions. Applied Organometallic Chemistry, 2020, 34, e5653.	3.5	18
34	Decoration of silver nanoparticles on multiâ€walled carbon nanotubes: Investigation of its antiâ€acute leukemia property against acute myeloid leukemia and acute T cell leukemia. Applied Organometallic Chemistry, 2020, 34, e5476.	3.5	16
35	Efficient N-Boc protection of amines by a reusable heterogeneous solid acid nanocatalyst at room temperature. Research on Chemical Intermediates, 2016, 42, 1451-1461.	2.7	14

Mesoporous SBAâ€15 Silica Phenylsulfonic Acid (SBAâ€15â€Phâ€6O₃H) as Efficient Nanocatalyst for Oneâ€pot Threeâ€component Synthesis of 3â€Methylâ€4â€arylâ€2,4,5,7â€tetrahydropyrazolo[3,4â€b]pyridineâ€6â€ones. 12 Journal of Heterocyclic Chemistry, 2017, 54, 1630-1635.

#	Article	IF	CITATIONS
37	Poly-(<1>N,Na€2 1 -dibromo-<1>N- 1 ethyl-benzene-1,3-disulfonamide) and <1>N,N,Na€2,Na€2 1 - Tetrabromobenzene-1,3-disulfonamide as Highly Efficient Catalysts, and (AC ₂ O/SIO ₂) as a Heterogeneous System for the Acetylation of Alcohols, Amines, and Thiols Under Microwave Irradiation. Phosphorus, Sulfur and Silicon and the Related	1.6	11
38	Oneâ€pot Green Synthesis of 3â€Methylâ€4â€arylâ€2,4,5,7â€tetrahydropyrazolo[3,4â€ <i>b</i>) pyridineâ€6â€e Multicomponent Assembling of 5â€Methylpyrazolâ€3â€amine, Aldehydes, and Meldrum's Acid Using Sodium Dodecyl Sulfate (SDS) in Water. Journal of Heterocyclic Chemistry, 2017, 54, 1640-1644.	ones by 2.6	9
39	Design and <i>in vitro</i> antifungal activity of Nystatin loaded chitosan-coated magnetite nanoparticles for targeted therapy. Inorganic and Nano-Metal Chemistry, 0, , 1-9.	1.6	1