Michael Buchert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8460319/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Onco-miR-21 Promotes Stat3-Dependent Gastric Cancer Progression. Cancers, 2022, 14, 264.	1.7	11
2	Combined Treatment with a WNT Inhibitor and the NSAID Sulindac Reduces Colon Adenoma Burden in Mice with Truncated APC. Cancer Research Communications, 2022, 2, 66-77.	0.7	5
3	Rapid Resistance of FGFR-driven Gastric Cancers to Regorafenib and Targeted FGFR Inhibitors can be Overcome by Parallel Inhibition of MEK. Molecular Cancer Therapeutics, 2021, 20, 704-715.	1.9	10
4	Cancer stem cell marker DCLK1 reprograms small extracellular vesicles toward migratory phenotype in gastric cancer cells. Proteomics, 2021, 21, e2000098.	1.3	15
5	Machine learning for medical imagingâ€based COVIDâ€19 detection and diagnosis. International Journal of Intelligent Systems, 2021, 36, 5085-5115.	3.3	22
6	EHF is essential for epidermal and colonic epithelial homeostasis, and suppresses <i>Apc</i> -initiated colonic tumorigenesis. Development (Cambridge), 2021, 148, .	1.2	8
7	IL33 and Mast Cells—The Key Regulators of Immune Responses in Gastrointestinal Cancers?. Frontiers in Immunology, 2020, 11, 1389.	2.2	23
8	IL-33-mediated mast cell activation promotes gastric cancer through macrophage mobilization. Nature Communications, 2019, 10, 2735.	5.8	139
9	Repurposing the selective estrogen receptor modulator <i>bazedoxifene</i> to suppress gastrointestinal cancer growth. EMBO Molecular Medicine, 2019, 11, .	3.3	32
10	<i>MACROD2</i> Haploinsufficiency Impairs Catalytic Activity of PARP1 and Promotes Chromosome Instability and Growth of Intestinal Tumors. Cancer Discovery, 2018, 8, 988-1005.	7.7	55
11	Generation of an inducible mouse model to reversibly silence Stat3. Genesis, 2017, 55, e23023.	0.8	9
12	The JAK/STAT3 axis: A comprehensive drug target for solid malignancies. Seminars in Cancer Biology, 2017, 45, 13-22.	4.3	147
13	Inducible gene modification in the gastric epithelium of <i>Tff1â€CreERT2</i> , <i>Tff2â€rtTA, Tff3â€luc</i> mice. Genesis, 2016, 54, 626-635.	0.8	6
14	Biochemical and Structural Insights into Doublecortin-like Kinase Domain 1. Structure, 2016, 24, 1550-1561.	1.6	56
15	Targeting JAK kinase in solid tumors: emerging opportunities and challenges. Oncogene, 2016, 35, 939-951.	2.6	173
16	Stomach-Specific Activation of Oncogenic KRAS and STAT3-Dependent Inflammation Cooperatively Promote Gastric Tumorigenesis in a Preclinical Model. Cancer Research, 2016, 76, 2277-2287.	0.4	33
17	A hypermorphic epithelial beta-catenin mutation facilitates intestinal tumorigenesis in mice in response to compounding WNT-pathway mutations. DMM Disease Models and Mechanisms, 2015, 8, 1361-73.	1.2	11
18	Glycoprotein A33 deficiency: a new model of impaired intestinal epithelial barrier function and inflammatory disease. DMM Disease Models and Mechanisms, 2015, 8, 805-15.	1.2	28

MICHAEL BUCHERT

#	Article	IF	CITATIONS
19	Partial inhibition of gp130-Jak-Stat3 signaling prevents Wnt–β-catenin–mediated intestinal tumor growth and regeneration. Science Signaling, 2014, 7, ra92.	1.6	68
20	Therapeutic Inhibition of Jak Activity Inhibits Progression of Gastrointestinal Tumors in Mice. Molecular Cancer Therapeutics, 2014, 13, 468-474.	1.9	31
21	150. Cytokine, 2014, 70, 64.	1.4	0
22	mTORC1 inhibition restricts inflammation-associated gastrointestinal tumorigenesis in mice. Journal of Clinical Investigation, 2013, 123, 767-81.	3.9	89
23	Abstract LB-262: Excessive Wnt activity is insufficient for intestinal tumor growth or regeneration without gp130/Jak2/Stat3 signaling , 2013, , .		0
24	Methods to Examine Tight Junction Physiology in Cancer Stem Cells: TEER, Paracellular Permeability, and Dilution Potential Measurements. Stem Cell Reviews and Reports, 2012, 8, 1030-1034.	5.6	35
25	Symplekin promotes tumorigenicity by up-regulating claudin-2 expression. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2628-2633.	3.3	69
26	Genetic Dissection of Differential Signaling Threshold Requirements for the Wnt/β-Catenin Pathway In Vivo. PLoS Genetics, 2010, 6, e1000816.	1.5	81
27	Linking inflammation to cancer – A novel role for Stat3. Cytokine, 2009, 48, 44.	1.4	3
28	The Symplekin/ZONAB Complex Inhibits Intestinal Cell Differentiation by the Repression of AML1/Runx1. Gastroenterology, 2009, 137, 156-164.e3.	0.6	33
29	Elevated Dnmt3a Activity Promotes Polyposis in ApcMin Mice by Relaxing Extracellular Restraints on Wnt Signaling. Gastroenterology, 2009, 137, 902-913.e11.	0.6	34
30	Defective Claudin-7 Regulation by Tcf-4 and Sox-9 Disrupts the Polarity and Increases the Tumorigenicity of Colorectal Cancer Cells. Cancer Research, 2008, 68, 4258-4268.	0.4	108
31	STAT3 and STAT1 mediate IL-11–dependent and inflammation-associated gastric tumorigenesis in gp130 receptor mutant mice. Journal of Clinical Investigation, 2008, 118, 1727-38.	3.9	276
32	DNA-methylation-dependent alterations of claudin-4 expression in human bladder carcinoma. Carcinogenesis, 2007, 28, 246-258.	1.3	79
33	β-Catenin/Tcf-4 Inhibition After Progastrin Targeting Reduces Growth and Drives Differentiation of Intestinal Tumors. Gastroenterology, 2007, 133, 1554-1568.	0.6	41
34	AF6/s-afadin is a dual residency protein and localizes to a novel subnuclear compartment. Journal of Cellular Physiology, 2007, 210, 212-223.	2.0	27
35	Eve-3: A liver enriched suppressor of Ras/MAPK signaling. Journal of Hepatology, 2006, 44, 758-767.	1.8	16
36	Functional interaction between the ZO-1-interacting transcription factor ZONAB/DbpA and the RNA processing factor symplekin. Journal of Cell Science, 2006, 119, 5098-5105.	1.2	68

MICHAEL BUCHERT

#	Article	IF	CITATIONS
37	Distinct requirements for the Sprouty domain for functional activity of Spred proteins. Biochemical Journal, 2005, 388, 445-454.	1.7	41
38	Ryk-deficient mice exhibit craniofacial defects associated with perturbed Eph receptor crosstalk. Nature Genetics, 2000, 25, 414-418.	9.4	157
39	The Junction-associated Protein AF-6 Interacts and Clusters with Specific Eph Receptor Tyrosine Kinases at Specialized Sites of Cell–Cell Contact in the Brain. Journal of Cell Biology, 1999, 144, 361-371.	2.3	187
40	Mutagenesis and selection of PDZ domains that bind new protein targets. Nature Biotechnology, 1999, 17, 170-175.	9.4	84
41	An epitope tagged mammalian/prokaryotic expression vector with positive selection of cloned inserts. Gene, 1997, 197, 337-341.	1.0	9
42	Useful Vectors for the Two-Hybrid System in Mammalian Cells. BioTechniques, 1997, 23, 396-402.	0.8	21
43	An In Vitro Assay of β-Galactosidase from Yeast. BioTechniques, 1996, 20, 960-962.	0.8	81
44	Transcription factor AP-2 essential for cranial closure and craniofacial development. Nature, 1996, 381, 235-238.	13.7	581