Agata Matejuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8460221/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cross-Talk of the CNS With Immune Cells and Functions in Health and Disease. Frontiers in Neurology, 2021, 12, 672455.	1.1	30
2	Microglia and astrocyte involvement in neurodegeneration and brain cancer. Journal of Neuroinflammation, 2021, 18, 298.	3.1	32
3	Crosstalk Between Astrocytes and Microglia: An Overview. Frontiers in Immunology, 2020, 11, 1416.	2.2	224
4	Skin Immunity. Archivum Immunologiae Et Therapiae Experimentalis, 2018, 66, 45-54.	1.0	113
5	Hypoxia-Regulated Overexpression of Soluble VEGFR2 Controls Angiogenesis and Inhibits Tumor Growth. Molecular Cancer Therapeutics, 2014, 13, 165-178.	1.9	44
6	Glycosylation of uroplakins. Implications for bladder physiopathology. Glycoconjugate Journal, 2014, 31, 623-636.	1.4	33
7	MicroRNAs and Tumor Vasculature Normalization: Impact on Anti-Tumor Immune Response. Archivum Immunologiae Et Therapiae Experimentalis, 2013, 61, 285-299.	1.0	24
8	Expression of Natural Autoantibodies in MRL-lpr Mice Protects from Lupus Nephritis and Improves Survival. Journal of Immunology, 2012, 188, 3628-3638.	0.4	43
9	News on microenvironmental physioxia to revisit skin cell targeting approaches. Experimental Dermatology, 2012, 21, 723-728.	1.4	13
10	Hypoxia control to normalize pathologic angiogenesis: Potential role for endothelial precursor cells and miRNAs regulation. Vascular Pharmacology, 2012, 56, 252-261.	1.0	40
11	Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. Journal of Cellular and Molecular Medicine, 2011, 15, 1239-1253.	1.6	971
12	Vaccines targeting the neovasculature of tumors. Vascular Cell, 2011, 3, 7.	0.2	26
13	IP6 in Cancer Therapy: Past, Present and Future. Current Cancer Therapy Reviews, 2010, 6, 1-12.	0.2	19
14	Peptide-based antifungal therapies against emerging infections. Drugs of the Future, 2010, 35, 197.	0.0	126
15	Exclusion of Natural Autoantibody-Producing B Cells from IgG Memory B Cell Compartment during T Cell-Dependent Immune Responses. Journal of Immunology, 2009, 182, 7634-7643.	0.4	24
16	Association of CD45dimVLA-4+ cells with the NKT cell lineage and their selective expression of IL-13, IP-15, and CCR3 transcripts. Archivum Immunologiae Et Therapiae Experimentalis, 2006, 54, 183-191.	1.0	3
17	Middle-Age Male Mice Have Increased Severity of Experimental Autoimmune Encephalomyelitis and Are Unresponsive to Testosterone Therapy. Journal of Immunology, 2005, 174, 2387-2395.	0.4	78
18	Estrogen treatment induces a novel population of regulatory cells, which suppresses experimental autoimmune encephalomyelitis. Journal of Neuroscience Research, 2004, 77, 119-126.	1.3	46

Ασατά Ματεjuk

#	Article	IF	CITATIONS
19	Opposing roles for TGF-β1 and TGF-β3 isoforms in experimental autoimmune encephalomyelitis. Cytokine, 2004, 25, 45-51.	1.4	28
20	Endogenous CD4+BV8S2? T cells from TG BV8S2+ donors confer complete protection against spontaneous experimental encephalomyelitis (Sp-EAE) in TCR transgenic, RAG?/? mice. Journal of Neuroscience Research, 2003, 71, 89-103.	1.3	13
21	CNS gene expression pattern associated with spontaneous experimental autoimmune encephalomyelitis. Journal of Neuroscience Research, 2003, 73, 667-678.	1.3	23
22	The Protective Effect of 17β-Estradiol on Experimental Autoimmune Encephalomyelitis Is Mediated through Estrogen Receptor-α. American Journal of Pathology, 2003, 163, 1599-1605.	1.9	167
23	Estradiol Treatment Redirects the Isotype of the Autoantibody Response and Prevents the Development of Autoimmune Arthritis. Journal of Immunology, 2003, 171, 5820-5827.	0.4	100
24	Transfer of Severe Experimental Autoimmune Encephalomyelitis by IL-12- and IL-18-Potentiated T Cells Is Estrogen Sensitive. Journal of Immunology, 2003, 170, 4802-4809.	0.4	41
25	Oral Feeding with Ethinyl Estradiol Suppresses and Treats Experimental Autoimmune Encephalomyelitis in SJL Mice and Inhibits the Recruitment of Inflammatory Cells into the Central Nervous System. Journal of Immunology, 2003, 170, 1548-1555.	0.4	115
26	17Beta-estradiol treatment profoundly down-regulates gene expression in spinal cord tissue in mice protected from experimental autoimmune encephalomyelitis. Archivum Immunologiae Et Therapiae Experimentalis, 2003, 51, 185-93.	1.0	8
27	Inhibitory Effects of Incomplete Freund's Adjuvant on Experimental Autoimmune Encephalomyelitis. Autoimmunity, 2002, 35, 21-28.	1.2	15
28	Evaluation of the Effects of 17β-Estradiol (17β-E2) on Gene Expression in Experimental Autoimmune Encephalomyelitis Using DNA Microarray. Endocrinology, 2002, 143, 313-319.	1.4	59
29	Estrogen Inhibits Systemic T Cell Expression of TNF-α and Recruitment of TNF-α+ T Cells and Macrophages into the CNS of Mice Developing Experimental Encephalomyelitis. Clinical Immunology, 2002, 102, 275-282.	1.4	50
30	A synthetic androstene derivative and a natural androstene metabolite inhibit relapsing–remitting EAE. Journal of Neuroimmunology, 2002, 130, 128-139.	1.1	40
31	Effects of cytokine deficiency on chemokine expression in CNS of mice with EAE. Journal of Neuroscience Research, 2002, 67, 680-688.	1.3	34
32	Estrogen inhibition of EAE involves effects on dendritic cell function. Journal of Neuroscience Research, 2002, 70, 238-248.	1.3	151
33	17?-estradiol inhibits cytokine, chemokine, and chemokine receptor mRNA expression in the central nervous system of female mice with experimental autoimmune encephalomyelitis. Journal of Neuroscience Research, 2001, 65, 529-542.	1.3	125
34	Estrogen Treatment Down-Regulates TNF-α Production and Reduces the Severity of Experimental Autoimmune Encephalomyelitis in Cytokine Knockout Mice. Journal of Immunology, 2001, 167, 542-552.	0.4	245
35	Reduced Chemokine and Chemokine Receptor Expression in Spinal Cords of TCR BV8S2 Transgenic Mice Protected Against Experimental Autoimmune Encephalomyelitis with BV8S2 Protein. Journal of Immunology, 2000, 164, 3924-3931.	0.4	34
36	Metastatic potential and saccharide antigens expression of human colon cancer cells xenotransplanted into athymic nude mice. Folia Microbiologica, 1998, 43, 507-510.	1.1	11