Wei Jin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8459934/publications.pdf

Version: 2024-02-01

115	5,658	40	70
papers	citations	h-index	g-index
116	116	116	5868
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Size effect of \hat{I}^3 -MnO2 precoated anode on lead-containing pollutant reduction and its controllable fabrication in industrial-scale for zinc electrowinning. Chemosphere, 2022, 287, 132457.	8.2	11
2	Confined N-CoSe2 active sites boost bifunctional oxygen electrocatalysis for rechargeable Zn–air batteries. Nano Energy, 2022, 91, 106675.	16.0	76
3	Dianion Induced Electron Delocalization of Trifunctional Electrocatalysts for Rechargeable Zn–Air Batteries and Selfâ€Powered Water Splitting. Advanced Functional Materials, 2022, 32, .	14.9	62
4	Recent Progress of Vacancy Engineering for Electrochemical Energy Conversion Related Applications. Advanced Functional Materials, 2021, 31, 2009070.	14.9	166
5	Simultaneous and precise recovery of lithium and boron from salt lake brine by capacitive deionization with oxygen vacancy-rich CoP/Co3O4-graphene aerogel. Chemical Engineering Journal, 2021, 420, 127661.	12.7	24
6	Sensitive Electrochemical Detection of Pb(II) and H ₂ O ₂ via a Dualâ€functional Snâ€doped Defective Bi ₂ S ₃ Microspheres. Electroanalysis, 2021, 33, 947-955.	2.9	3
7	Rapid synthesis of gold–palladium core–shell aerogels for selective and robust electrochemical CO ₂ reduction. Journal of Materials Chemistry A, 2021, 9, 17189-17197.	10.3	32
8	Corrosion Engineering on Iron Foam toward Efficiently Electrocatalytic Overall Water Splitting Powered by Sustainable Energy. Advanced Functional Materials, 2021, 31, 2010437.	14.9	125
9	Towards source reduction and green sustainability of metal-bearing waste streams: The electrochemical processes. Electrochimica Acta, 2021, 374, 137937.	5.2	8
10	Engineering Bismuth–Tin Interface in Bimetallic Aerogel with a 3D Porous Structure for Highly Selective Electrocatalytic CO ₂ Reduction to HCOOH. Angewandte Chemie - International Edition, 2021, 60, 12554-12559.	13.8	188
11	Engineering Bismuth–Tin Interface in Bimetallic Aerogel with a 3D Porous Structure for Highly Selective Electrocatalytic CO ₂ Reduction to HCOOH. Angewandte Chemie, 2021, 133, 12662-12667.	2.0	36
12	Selfâ€Supporting Electrodes for Gasâ€Involved Key Energy Reactions. Advanced Functional Materials, 2021, 31, 2104620.	14.9	39
13	Transformation of antiviral ribavirin during ozone/PMS intensified disinfection amid COVID-19 pandemic. Science of the Total Environment, 2021, 790, 148030.	8.0	20
14	Carbon nanomaterials: Synthesis, properties and applications in electrochemical sensors and energy conversion systems. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 272, 115341.	3.5	40
15	In-situ growth of CoFeS2 on metal-organic frameworks-derived Co-NC polyhedron enables high-performance oxygen electrocatalysis for rechargeable zinc-air batteries. Journal of Power Sources, 2021, 512, 230430.	7.8	25
16	Evolution of interfacial coupling interaction of Ni-Ru species for pH-universal water splitting. Chemical Engineering Journal, 2021, 426, 130762.	12.7	36
17	Highly efficient removal of bisphenol A by a novel Co-doped LaFeO3 perovskite/PMS system in salinity water. Science of the Total Environment, 2021, 801, 149490.	8.0	86
18	Performance evaluation on the pollution control against wet weather overflow based on on-site coagulation/flocculation in terminal drainage pipes. Frontiers of Environmental Science and Engineering, 2021, 15, 1.	6.0	1

#	Article	IF	CITATIONS
19	Ultrafine Ir nanoparticles decorated on FeP/FeOOH with abundant interfaces <i>via</i> a facile corrosive approach for alkaline water-splitting. Journal of Materials Chemistry A, 2021, 9, 12074-12079.	10.3	32
20	Functional nanomaterial-derived electrochemical sensor and biosensor platforms for biomedical applications., 2020,, 297-327.		10
21	Rational design of Cu–Co thiospinel ternary sheet arrays for highly efficient electrocatalytic water splitting. Journal of Materials Chemistry A, 2020, 8, 1799-1807.	10.3	48
22	Sustainable Valuable Metal Recovery from the V–Cr–Fe Ternary Slime via Leaching-Selective Complexation. ACS Sustainable Chemistry and Engineering, 2020, 8, 958-965.	6.7	5
23	Highly efficient SnS-decorated Bi2O3 nanosheets for simultaneous electrochemical detection and removal of Cd(II) and Pb(II). Journal of Electroanalytical Chemistry, 2020, 856, 113744.	3.8	53
24	Gas evolution characterization and phase transformation during thermal treatment of cathode plates from spent LiFePO4 batteries. Thermochimica Acta, 2020, 684, 178483.	2.7	15
25	Cobalt oxide, sulfide and phosphide-decorated carbon felt for the capacitive deionization of lead ions. Separation and Purification Technology, 2020, 237, 116343.	7.9	27
26	Thermodynamic insight into the growth of nanoscale inclusion of Al-deoxidation in Fe–O–Al melt. Scientific Reports, 2020, 10, 16909.	3.3	3
27	Bifunctional electrochemical detection of organic molecule and heavy metal at two-dimensional Sn-In2S3 nanocomposite. Microchemical Journal, 2020, 159, 105454.	4.5	4
28	Recent Advances in Catalyst Development for Transesterification of Dialkyl Carbonates with Phenol. Industrial & Engineering Chemistry Research, 2020, 59, 20630-20645.	3.7	3
29	Interface engineering of oxygen-vacancy-rich NiCo ₂ O ₄ /NiCoP heterostructure as an efficient bifunctional electrocatalyst for overall water splitting. Catalysis Science and Technology, 2020, 10, 5559-5565.	4.1	43
30	Recent development of two-dimensional metal–organic framework derived electrocatalysts for hydrogen and oxygen electrocatalysis. Nanoscale, 2020, 12, 18497-18522.	5.6	69
31	Editorial: Carbon-Based Bifunctional Oxygen Electrocatalysts. Frontiers in Chemistry, 2020, 8, 713.	3.6	2
32	Atomically Dispersed CoN ₄ /B, N-C Nanotubes Boost Oxygen Reduction in Rechargeable Zn–Air Batteries. ACS Applied Energy Materials, 2020, 3, 4539-4548.	5.1	53
33	Sulfurated Metal–Organic Framework-Derived Nanocomposites for Efficient Bifunctional Oxygen Electrocatalysis and Rechargeable Zn–Air Battery. ACS Sustainable Chemistry and Engineering, 2020, 8, 9226-9234.	6.7	79
34	Effect of passive ventilation on the performance of unplanted sludge treatment wetlands: heavy metal removal and microbial community variation. Environmental Science and Pollution Research, 2020, 27, 31665-31676.	5.3	4
35	Sustainable Electrochemical Extraction of Metal Resources from Waste Streams: From Removal to Recovery. ACS Sustainable Chemistry and Engineering, 2020, 8, 4693-4707.	6.7	84
36	High-efficiency extraction of aluminum from low-grade kaolin via a novel low-temperature activation method for the preparation of poly-aluminum-ferric-sulfate coagulant. Journal of Cleaner Production, 2020, 257, 120399.	9.3	18

#	Article	IF	Citations
37	Engineering Multimetallic Aerogels for pHâ€Universal HER and ORR Electrocatalysis. Advanced Energy Materials, 2020, 10, 1903857.	19.5	83
38	High selectivity and effectiveness for removal of tetracycline and its related drug resistance in food wastewater through schwertmannite/graphene oxide catalyzed photo-Fenton-like oxidation. Journal of Hazardous Materials, 2020, 392, 122437.	12.4	62
39	Coral-like carbon-wrapped NiCo alloys derived by emulsion aggregation strategy for efficient oxygen evolution reaction. Journal of Colloid and Interface Science, 2020, 573, 96-104.	9.4	36
40	Morphology-controllable formation of MOF-Derived C/ZrO2@1T-2H MoS2 heterostructure for improved electrocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2020, 45, 14831-14840.	7.1	8
41	Understanding the features of PGMs in spent ternary automobile catalysts for development of cleaner recovery technology. Journal of Cleaner Production, 2019, 239, 118031.	9.3	66
42	Simultaneous Phenol Detoxification and Dilute Metal Recovery in Cyclone Electrochemical Reactor. Industrial & Engineering Chemistry Research, 2019, 58, 12642-12649.	3.7	21
43	Adsorption behavior of arsenicals on MIL-101(Fe): The role of arsenic chemical structures. Journal of Colloid and Interface Science, 2019, 554, 692-704.	9.4	202
44	Oxygen Vacancy–Rich Inâ€Doped CoO/CoP Heterostructure as an Effective Air Cathode for Rechargeable Zn–Air Batteries. Small, 2019, 15, e1904210.	10.0	142
45	Thermodynamic Modelling on Nanoscale Growth of Magnesia Inclusion in Fe-O-Mg Melt. Metals, 2019, 9, 174.	2.3	2
46	Inhibition Role of Trace Metal Ion Additives on Zinc Dendrites during Plating and Striping Processes. Advanced Materials Interfaces, 2019, 6, 1901358.	3.7	46
47	Defective graphene aerogel-supported Bi–CoP nanoparticles as a high-potential air cathode for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2019, 7, 22507-22513.	10.3	39
48	Facile synthesis of core-shell CuS-Cu2S based nanocomposite for the high-performance glucose detection. Materials Science and Engineering C, 2019, 105, 110120.	7.3	22
49	<i>In situ</i> growth of CuS decorated graphene oxide-multiwalled carbon nanotubes for ultrasensitive H ₂ O ₂ detection in alkaline solution. New Journal of Chemistry, 2019, 43, 3309-3316.	2.8	13
50	High-Performance Capacitive Deionization of Copper Ions at Nanoporous ZnS-Decorated Carbon Felt. Journal of the Electrochemical Society, 2019, 166, E29-E34.	2.9	15
51	Ni-foam supported Co(OH)F and Co–P nanoarrays for energy-efficient hydrogen production <i>via</i> urea electrolysis. Journal of Materials Chemistry A, 2019, 7, 3697-3703.	10.3	235
52	Structural evolution of calcia during calcium deoxidation in Fe–O–Ca melt. Physical Chemistry Chemical Physics, 2019, 21, 13847-13855.	2.8	8
53	Earth-abundant transition metal and metal oxide nanomaterials: Synthesis and electrochemical applications. Progress in Materials Science, 2019, 106, 100574.	32.8	184
54	Recent advances of porous transition metal-based nanomaterials for electrochemical energy conversion and storage applications. Materials Today Energy, 2019, 13, 64-84.	4.7	64

#	Article	IF	CITATIONS
55	Efficient recovery of scrapped V2O5-WO3/TiO2 SCR catalyst by cleaner hydrometallurgical process. Hydrometallurgy, 2019, 187, 45-53.	4.3	16
56	Encapsulated spinel CuXCo3-XO4 in carbon nanotubes as efficient and stable oxygen electrocatalysts. International Journal of Hydrogen Energy, 2019, 44, 11421-11430.	7.1	33
57	A novel graphene oxide-carbon nanotubes anchored α-FeOOH hybrid activated persulfate system for enhanced degradation of Orange II. Journal of Environmental Sciences, 2019, 83, 73-84.	6.1	64
58	Agl loading BiOI composites with enhanced photodegradation efficiency for bisphenol A under simulated solar light. Science of the Total Environment, 2019, 669, 194-204.	8.0	33
59	<i>In situ</i> decoration of plasmonic silver nanoparticles on poly(vinylidene fluoride) membrane for versatile SERS detection. New Journal of Chemistry, 2019, 43, 6965-6972.	2.8	11
60	Potentially More Ecofriendly Chemical Pathway for Production of High-Purity TiO ₂ from Titanium Slag. ACS Sustainable Chemistry and Engineering, 2019, 7, 4821-4830.	6.7	23
61	MOF-derived two-dimensional N-doped carbon nanosheets coupled with Co–Fe–P–Se as efficient bifunctional OER/ORR catalysts. Nanoscale, 2019, 11, 20144-20150.	5.6	83
62	Transformation pathway and degradation mechanism of methylene blue through \hat{l}^2 -FeOOH@GO catalyzed photo-Fenton-like system. Chemosphere, 2019, 218, 83-92.	8.2	84
63	Nâ€doped Carbonâ€coated Metal Sulfides/Phosphides Derived from Protic Salts for Oxygen Evolution Reaction. ChemCatChem, 2019, 11, 1185-1191.	3.7	6
64	Nanosheet-like Co ₃ (OH) ₂ (HPO ₄) ₂ as a Highly Efficient and Stable Electrocatalyst for Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 3083-3091.	6.7	39
65	Effective inhibition of zinc dendrites during electrodeposition using thiourea derivatives as additives. Journal of Materials Science, 2019, 54, 3536-3546.	3.7	16
66	Hydrothermal synthesis of plugged micro/mesoporous Al-SBA-15 from spent fluid catalytic cracking catalyst. Materials Chemistry and Physics, 2019, 222, 227-229.	4.0	13
67	Efficient electrochemical recovery of fine tellurium powder from hydrochloric acid media via mass transfer enhancement. Separation and Purification Technology, 2018, 203, 117-123.	7.9	29
68	Additives-assisted electrodeposition of fine spherical copper powder from sulfuric acid solution. Powder Technology, 2018, 326, 84-88.	4.2	27
69	Ramie Biomass Derived Nitrogen-Doped Activated Carbon for Efficient Electrocatalytic Production of Hydrogen Peroxide. Journal of the Electrochemical Society, 2018, 165, E171-E176.	2.9	22
70	Hierarchical oxygen-implanted MoS2 nanoparticle decorated graphene for the non-enzymatic electrochemical sensing of hydrogen peroxide in alkaline media. Talanta, 2018, 176, 397-405.	5.5	64
71	Bimetallic gold-nickel nanoparticles as a sensitive amperometric sensing platform for acetaminophen in human serum. Journal of Electroanalytical Chemistry, 2018, 808, 259-265.	3.8	28
72	Electrochemically activated Cu ₂ O/Co ₃ O ₄ nanocomposites on defective carbon nanotubes for the hydrogen evolution reaction. New Journal of Chemistry, 2018, 42, 19400-19406.	2.8	14

#	Article	IF	Citations
73	Nucleation and growth for magnesia inclusion in Fe–O–Mg melt. RSC Advances, 2018, 8, 38336-38345.	3.6	14
74	Selective and Efficient Electrochemical Recovery of Dilute Copper and Tellurium from Acidic Chloride Solutions. ACS Sustainable Chemistry and Engineering, 2018, 6, 13378-13384.	6.7	39
75	Nanomaterial-based environmental sensing platforms using state-of-the-art electroanalytical strategies. Journal of Analytical Science and Technology, 2018, 9, .	2.1	19
76	Efficient electrochemical recovery of dilute selenium by cyclone electrowinning. Hydrometallurgy, 2018, 179, 232-237.	4.3	29
77	Facile synthesis of CoWO4/RGO composites as superior anode materials for lithium-ion batteries. Journal of Solid State Electrochemistry, 2018, 22, 2767-2774.	2.5	14
78	Phase confinement of self-migrated plasmonic silver in triphasic system: Offering 3D hot spots on hydrophobic paper for SERS detection. Applied Surface Science, 2018, 450, 138-145.	6.1	6
79	A sustainable process for metal recycling from spent lithium-ion batteries using ammonium chloride. Waste Management, 2018, 79, 545-553.	7.4	79
80	Twinned copper nanoparticles modulated with electrochemical deposition for <i>in situ</i> SERS monitoring. CrystEngComm, 2018, 20, 5609-5618.	2.6	5
81	Nanomaterials based electrochemical sensor and biosensor platforms for environmental applications. Trends in Environmental Analytical Chemistry, 2017, 13, 10-23.	10.3	285
82	Efficient oxidative dissolution of V2O3 by the in situ electro-generated reactive oxygen species on N-doped carbon felt electrodes. Electrochimica Acta, 2017, 226, 140-147.	5.2	24
83	Electrochemical detection of chemical pollutants based on gold nanomaterials. Trends in Environmental Analytical Chemistry, 2017, 14, 28-36.	10.3	48
84	Electrochemical detoxification and recovery of spent SCR catalyst by in-situ generated reactive oxygen species in alkaline media. Chemical Engineering Journal, 2017, 325, 544-553.	12.7	54
85	Mass transport-enhanced electrodeposition for the efficient recovery of copper and selenium from sulfuric acid solution. Separation and Purification Technology, 2017, 182, 160-165.	7.9	20
86	Cleaner production of vanadium oxides by cation-exchange membrane-assisted electrolysis of sodium vanadate solution. Hydrometallurgy, 2017, 169, 440-446.	4.3	8
87	A Closed-Loop Process for Selective Metal Recovery from Spent Lithium Iron Phosphate Batteries through Mechanochemical Activation. ACS Sustainable Chemistry and Engineering, 2017, 5, 9972-9980.	6.7	195
88	Recovery of Lithium, Nickel, and Cobalt from Spent Lithium-Ion Battery Powders by Selective Ammonia Leaching and an Adsorption Separation System. ACS Sustainable Chemistry and Engineering, 2017, 5, 11489-11495.	6.7	118
89	W-doped MoS2 nanosheets as a highly-efficient catalyst for hydrogen peroxide electroreduction in alkaline media. Catalysis Science and Technology, 2017, 7, 5733-5740.	4.1	12
90	Reinforced As(III) oxidation by the in-situ electro-generated hydrogen peroxide on MoS2 ultrathin nanosheets modified carbon felt in alkaline media. Electrochimica Acta, 2017, 252, 245-253.	5.2	22

#	Article	IF	Citations
91	Controlled Electrodeposition of Uniform Copper Powder from Hydrochloric Acid Solutions. Journal of the Electrochemical Society, 2017, 164, D723-D728.	2.9	26
92	Alkaline electrochemical advanced oxidation process for chromium oxidation at graphitized multi-walled carbon nanotubes. Chemosphere, 2017, 183, 156-163.	8.2	62
93	Electrochemistry during efficient copper recovery from complex electronic waste using ammonia based solutions. Frontiers of Chemical Science and Engineering, 2017, 11, 308-316.	4.4	23
94	Cr(III)-induced electrochemical advanced oxidation processes for the V2O3 dissolution in alkaline media. Chemical Engineering Journal, 2017, 307, 518-525.	12.7	27
95	Recent Advances in the Synthesis of Layered, Doubleâ€Hydroxideâ€Based Materials and Their Applications in Hydrogen and Oxygen Evolution. Energy Technology, 2016, 4, 354-368.	3.8	84
96	Enhanced electrochemical performance of ZnMoO4/reduced graphene oxide composites as anode materials for lithium-ion batteries. Electrochimica Acta, 2016, 222, 838-844.	5.2	45
97	Tuning \hat{l}_{\pm} -Fe2O3 nanotube arrays for the oxygen reduction reaction in alkaline media. RSC Advances, 2016, 6, 41878-41884.	3.6	32
98	Facile Synthesis of Mesoporous Manganese–Iron Nanorod Arrays Efficient for Water Oxidation. ACS Sustainable Chemistry and Engineering, 2016, 4, 5398-5403.	6.7	23
99	Improved electrochemical Cr(VI) detoxification by integrating the direct and indirect pathways. Journal of Electroanalytical Chemistry, 2016, 775, 325-328.	3.8	15
100	Electrochemical Cr(III) Oxidation and Mobilization by In Situ Generated Reactive Oxygen Species in Alkaline Solution. Journal of the Electrochemical Society, 2016, 163, H684-H689.	2.9	19
101	Facile synthesis of goethite anchored regenerated graphene oxide nanocomposite and its application in the removal of fluoride from drinking water. Desalination and Water Treatment, 2016, 57, 28393-28404.	1.0	9
102	Defluoridation by rice spike-like akaganeite anchored graphene oxide. RSC Advances, 2016, 6, 11240-11249.	3.6	26
103	Electrochemical processes for the environmental remediation of toxic Cr(VI): A review. Electrochimica Acta, 2016, 191, 1044-1055.	5.2	264
104	Electrolytic recovery of bismuth and copper as a powder from acidic sulfate effluents using an emew® cell. RSC Advances, 2015, 5, 50372-50378.	3.6	22
105	The influence of KOH concentration, oxygen partial pressure and temperature on the oxygen reduction reaction at Pt electrodes. Journal of Electroanalytical Chemistry, 2015, 741, 100-108.	3.8	30
106	Recent advances in electrochemical detection of toxic Cr(<scp>vi</scp>). RSC Advances, 2015, 5, 37440-37450.	3.6	86
107	Integrated lignin-mediated adsorption-release process and electrochemical reduction for the removal of trace Cr(<scp>vi</scp>). RSC Advances, 2014, 4, 27843-27849.	3.6	43
108	Sensitive and selective electrochemical detection of chromium(<scp>vi</scp>) based on gold nanoparticle-decorated titania nanotube arrays. Analyst, The, 2014, 139, 235-241.	3.5	153

#	Article	IF	CITATIONS
109	Efficient extraction of lignin from black liquor via a novel membrane-assisted electrochemical approach. Electrochimica Acta, 2013, 107, 611-618.	5.2	45
110	Indirect Electrochemical Cr(III) Oxidation in KOH Solutions at an Au Electrode: The Role of Oxygen Reduction Reaction. Journal of Physical Chemistry B, 2012, 116, 7531-7537.	2.6	38
111	Modulated Cr(III) oxidation in KOH solutions at a gold electrode: Competition between disproportionation and stepwise electron transfer. Electrochimica Acta, 2011, 56, 8311-8318.	5.2	30
112	Notice of Retraction: Optimization of coagulation-flocculation conditions for the treatment of combined sewer overflow wastewater. , 2010, , .		1
113	Phase Diagrams for the Ternary Na ₂ Oâ^'Al ₂ O ₃ â^'H ₂ O System at (150 and 180) °C. Journal of Chemical & System at (150 and 180) °C. Journal of Chemical & System at (150 and 180) A°C. Journal of Chemical & System at (150	1.9	15
114	Comparison of the Oxygen Reduction Reaction between NaOH and KOH Solutions on a Pt Electrode: The Electrolyte-Dependent Effect. Journal of Physical Chemistry B, 2010, 114, 6542-6548.	2.6	151
115	Isopiestic Study of the Na ₂ CrO ₄ â^'H ₂ O System at 353.15 K: Prediction of the Solubility of Na ₂ CrO ₄ in Aqueous NaOH Solutions. Industrial & Description of the Solution of Naces of States of Sta	3.7	15