
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/845964/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Incorporating dwelling mounds into induced seismic risk analysis for the Groningen gas field in the Netherlands. Bulletin of Earthquake Engineering, 2022, 20, 255-285.	4.1	3
2	Collapse analysis of the multi-span reinforced concrete arch bridge of Caprigliola, Italy. Engineering Structures, 2022, 251, 113375.	5.3	20
3	Analytical and numerical analysis of the torsional response of the multi-cell deck of a collapsed cable-stayed bridge. Engineering Structures, 2022, 265, 114412.	5.3	8
4	Impact of ground floor openings percentage on the dynamic response of typical Dutch URM cavity wall structures. Bulletin of Earthquake Engineering, 2021, 19, 403-428.	4.1	7
5	Seismic Hazard and Risk Due to Induced Earthquakes at a Shale Gas Site. Bulletin of the Seismological Society of America, 2021, 111, 875-897.	2.3	13
6	Variations between foundation-level recordings and free-field earthquake ground motions: numerical study at soft-soil sites. Soil Dynamics and Earthquake Engineering, 2021, 141, 106511.	3.8	9
7	Integrated economic and environmental building classification and optimal seismic vulnerability/energy efficiency retrofitting. Bulletin of Earthquake Engineering, 2021, 19, 3627-3670.	4.1	25
8	Shake-table response simulation of a URM building specimen using discrete micro-models with varying degrees of detail. Bulletin of Earthquake Engineering, 2021, 19, 5953-5976.	4.1	7
9	Interstory drift based scaling of earthquake ground motions. Earthquake Engineering and Structural Dynamics, 2021, 50, 3814-3830.	4.4	9
10	On the Applicability of Transfer Function Models for SSI Embedment Effects. Infrastructures, 2021, 6, 137.	2.8	2
11	Applied Element Modelling of the Dynamic Response of a Full-Scale Clay Brick Masonry Building Specimen with Flexible Diaphragms. International Journal of Architectural Heritage, 2020, 14, 1484-1501.	3.1	30
12	Shake Table Blind Prediction Tests: Contributions for Improved Fiber-based Frame Modelling. Journal of Earthquake Engineering, 2020, 24, 1435-1476.	2.5	22
13	Friction characterization testing of fabric felt material used in precast structures. Structural Concrete, 2020, 21, 735-746.	3.1	4
14	A Life Cycle Framework for the Identification of Optimal Building Renovation Strategies Considering Economic and Environmental Impacts. Sustainability, 2020, 12, 10221.	3.2	19
15	Seismic fragility analysis of URM buildings founded on piles: influence of dynamic soil–structure interaction models. Bulletin of Earthquake Engineering, 2020, 18, 4127-4156.	4.1	24
16	Simulating the shake table response of unreinforced masonry cavity wall structures tested to collapse or near-collapse conditions. Earthquake Spectra, 2020, 36, 554-578.	3.1	17
17	Numerical modelling of the out-of-plane response of full-scale brick masonry prototypes subjected to incremental dynamic shake-table tests. Engineering Structures, 2020, 209, 110298.	5.3	26
18	Dynamic soil-structure interaction models for fragility characterisation of buildings with shallow foundations. Soil Dynamics and Earthquake Engineering, 2020, 132, 106004.	3.8	35

#	Article	IF	CITATIONS
19	Numerical Study on the Collapse of the Morandi Bridge. Journal of Performance of Constructed Facilities, 2020, 34, .	2.0	53
20	Ground-motion networks in the Groningen field: usability and consistency of surface recordings. Journal of Seismology, 2019, 23, 1233-1253.	1.3	12
21	Cyclic tensile testing of a threeâ€way panel connection for precast wallâ€slabâ€wall structures. Structural Concrete, 2019, 20, 1307-1315.	3.1	29
22	Shake-Table Testing of a Full-Scale Two-Story Precast Wall-Slab-Wall Structure. Earthquake Spectra, 2019, 35, 1583-1609.	3.1	42
23	Probabilistic damage assessment of buildings due to induced seismicity. Bulletin of Earthquake Engineering, 2019, 17, 4495-4516.	4.1	34
24	Once upon a Time in Italy: The Tale of the Morandi Bridge. Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE), 2019, 29, 198-217.	0.8	139
25	A Probabilistic Model to Evaluate Options for Mitigating Induced Seismic Risk. Earthquake Spectra, 2019, 35, 537-564.	3.1	50
26	Critical Assessment of Intensity Measures for Seismic Response of Italian RC Bridge Portfolios. Journal of Earthquake Engineering, 2019, 23, 980-1000.	2.5	37
27	Derivation of Fragility Functions for Seismic Assessment of RC Bridge Portfolios Using Different Intensity Measures. Journal of Earthquake Engineering, 2019, 23, 1678-1694.	2.5	21
28	COMPARATIVE ASSESSMENT OF DYNAMIC SOIL-STRUCTURE INTERACTION MODELS FOR FRAGILITY CHARACTERISATION. , 2019, , .		1
29	Explicit collapse analysis of the Morandi Bridge using the Applied Element Method. , 2019, , 87-120.		0
30	Using the applied element method for modelling calcium silicate brick masonry subjected to inâ€plane cyclic loading. Earthquake Engineering and Structural Dynamics, 2018, 47, 1610-1630.	4.4	52
31	Cyclic testing of a full-scale two-storey reinforced precast concrete wall-slab-wall structure. Bulletin of Earthquake Engineering, 2018, 16, 5309-5339.	4.1	48
32	Cyclic testing and analysis of a full-scale cast-in-place reinforced concrete wall-slab-wall structure. Bulletin of Earthquake Engineering, 2018, 16, 4761-4796.	4.1	30
33	Elastic and Inelastic Analysis of Frames with a Force-Based Higher-Order 3D Beam Element Accounting for Axial-Flexural-Shear-Torsional Interaction. Computational Methods in Applied Sciences (Springer), 2017, , 109-128.	0.3	1
34	Developing fragility and consequence models for buildings in the Groningen field. Geologie En Mijnbouw/Netherlands Journal of Geosciences, 2017, 96, s247-s257.	0.9	9
35	Hazard and risk assessments for induced seismicity in Groningen. Geologie En Mijnbouw/Netherlands Journal of Geosciences, 2017, 96, s259-s269.	0.9	27
36	Framework for Developing Fragility and Consequence Models for Local Personal Risk. Earthquake Spectra, 2017, 33, 1325-1345.	3.1	56

#	Article	IF	CITATIONS
37	After the L'Aquila Trial. Seismological Research Letters, 2016, 87, 591-596.	1.9	8
38	Unleashing the Full Sustainable Potential of Thick Films of Lead-Free Potassium Sodium Niobate (K _{0.5} Na _{0.5} NbO ₃) by Aqueous Electrophoretic Deposition. Langmuir, 2016, 32, 5241-5249.	3.5	16
39	Parametric Characterization of RC Bridges for Seismic Assessment Purposes. Structures, 2016, 7, 14-24.	3.6	37
40	Probabilistic Seismic Assessment of RC Bridges: Part II — Nonlinear Demand Prediction. Structures, 2016, 5, 274-283.	3.6	19
41	Probabilistic Seismic Assessment of RC Bridges: Part I — Uncertainty Models. Structures, 2016, 5, 258-273.	3.6	29
42	SIMPLIFIED PERIOD ESTIMATION OF ITALIAN RC BRIDGES FOR LARGE-SCALE SEISMIC ASSESSMENT. , 2016, , .		3
43	Investigation of the characteristics of Portuguese regular moment-frame RC buildings and development of a vulnerability model. Bulletin of Earthquake Engineering, 2015, 13, 1455-1490.	4.1	70
44	Force-based higher-order beam element with flexural–shear–torsional interaction in 3D frames. Part I: Theory. Engineering Structures, 2015, 89, 204-217.	5.3	18
45	A risk-mitigation approach to the management of induced seismicity. Journal of Seismology, 2015, 19, 623-646.	1.3	99
46	Force-based higher-order beam element with flexural-shear-torsional interaction in 3D frames. Part II: Applications. Engineering Structures, 2015, 89, 218-235.	5.3	11
47	Seismic fragility of Italian RC precast industrial structures. Engineering Structures, 2015, 94, 122-136.	5.3	120
48	Seismic risk assessment for mainland Portugal. Bulletin of Earthquake Engineering, 2015, 13, 429-457.	4.1	116
49	Sodium potassium niobate (K _{0.5} Na _{0.5} NbO ₃ , KNN) thick films by electrophoretic deposition. RSC Advances, 2015, 5, 4698-4706.	3.6	40
50	USING DIFFERENT UNCERTAINTY MODELS FOR SEISMIC ASSESSMENT OF RC BRIDGES. , 2015, , .		4
51	Investigation of the Characteristics of the Portuguese Moment-Frame RC Building Stock. , 2014, , .		4
52	Development of the OpenQuake engine, the Global Earthquake Model's open-source software for seismic risk assessment. Natural Hazards, 2014, 72, 1409-1427.	3.4	232
53	Evaluation of analytical methodologies used to derive vulnerability functions. Earthquake Engineering and Structural Dynamics, 2014, 43, 181-204.	4.4	73
54	Spectral reduction factors evaluation for seismic assessment of frame buildings. Engineering Structures, 2014, 77, 129-142.	5.3	19

#	Article	IF	CITATIONS
55	Including Multiple IMTs in the Development of Fragility Functions for Earthquake Loss Estimation. , 2014, , .		11
56	Earthquake loss estimation of residential buildings in Pakistan. Natural Hazards, 2014, 73, 1889-1955.	3.4	44
57	Development of a Fragility Model for Moment-Frame RC Buildings in Portugal. , 2014, , .		7
58	Evaluation of Nonlinear Static Procedures in the Assessment of Building Frames. Earthquake Spectra, 2013, 29, 1459-1476.	3.1	49
59	Extending displacement-based earthquake loss assessment (DBELA) for the computation of fragility curves. Engineering Structures, 2013, 56, 343-356.	5.3	36
60	Assessing global earthquake risks: the Clobal Earthquake Model (GEM) initiative. , 2013, , 815-838.		19
61	Seismic Energy Dissipation in Inelastic Frames: Understanding State-of-the-Practice Damping Models. Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE), 2013, 23, 148-158.	0.8	20
62	Seismic demand estimation of RC frame buildings based on simplified and nonlinear dynamic analyses. Earthquake and Structures, 2013, 4, 157-179.	1.0	14
63	Displacement-Based Fragility Curves for Seismic Assessment of Adobe Buildings in Cusco, Peru. Earthquake Spectra, 2012, 28, 759-794.	3.1	35
64	Modelling of Bridges for Inelastic Analysis. Geotechnical, Geological and Earthquake Engineering, 2012, , 5-84.	0.2	2
65	Comparison of Base Shears Estimated from Floor Accelerations and Column Shears. Earthquake Spectra, 2012, 28, 831-832.	3.1	0
66	Methods for Inelastic Analysis of Bridges. Geotechnical, Geological and Earthquake Engineering, 2012, , 85-128.	0.2	0
67	Adaptive force-based frame element for regularized softening response. Computers and Structures, 2012, 102-103, 1-13.	4.4	23
68	Analytical modelling of a largeâ€scale dynamic testing facility. Earthquake Engineering and Structural Dynamics, 2012, 41, 255-277.	4.4	9
69	Implementation and verification of a masonry panel model for nonlinear dynamic analysis of infilled RC frames. Bulletin of Earthquake Engineering, 2011, 9, 1519-1534.	4.1	98
70	Revisiting Eurocode 8 formulae for periods of vibration and their employment in linear seismic analysis. Earthquake Engineering and Structural Dynamics, 2010, 39, 223-235.	4.4	37
71	Numerical Issues in Distributed Inelasticity Modeling of RC Frame Elements for Seismic Analysis. Journal of Earthquake Engineering, 2010, 14, 38-68.	2.5	126
72	Displacement-Based Earthquake Loss Assessment of Masonry Buildings in Mansehra City, Pakistan. Journal of Earthquake Engineering, 2010, 14, 1-37.	2.5	27

#	Article	IF	CITATIONS
73	The Influence of Geographical Resolution of Urban Exposure Data in an Earthquake Loss Model for Istanbul. Earthquake Spectra, 2010, 26, 619-634.	3.1	51
74	Using nonlinear static procedures for seismic assessment of the 3D irregular SPEAR building. Earthquake and Structures, 2010, 1, 177-195.	1.0	46
75	Assessment of Continuous Span Bridges through Nonlinear Static Procedures. Earthquake Spectra, 2009, 25, 143-159.	3.1	54
76	A fibre flexure–shear model for seismic analysis of RCâ€framed structures. Earthquake Engineering and Structural Dynamics, 2009, 38, 565-586.	4.4	63
77	A comparison of seismic risk maps for Italy. Bulletin of Earthquake Engineering, 2009, 7, 149-180.	4.1	64
78	Open access?. Nature Geoscience, 2009, 2, 155-155.	12.9	0
79	Verification of displacement-based adaptive pushover through multi-ground motion incremental dynamic analyses. Engineering Structures, 2009, 31, 1789-1799.	5.3	49
80	Verification of spectral reduction factors for seismic assessment of bridges. Bulletin of the New Zealand Society for Earthquake Engineering, 2009, 42, 111-121.	0.5	24
81	Traditional and Innovative Methods for Seismic Vulnerability Assessment at Large Geographical Scales. Geotechnical, Geological and Earthquake Engineering, 2009, , 197-220.	0.2	0
82	Deriving vulnerability curves using Italian earthquake damage data. Bulletin of Earthquake Engineering, 2008, 6, 485-504.	4.1	83
83	Simplified pushover-based vulnerability analysis for large-scale assessment of RC buildings. Engineering Structures, 2008, 30, 804-820.	5.3	173
84	Detailed assessment of structural characteristics of Turkish RC building stock for loss assessment models. Soil Dynamics and Earthquake Engineering, 2008, 28, 914-932.	3.8	126
85	Simplified Pushover-Based Earthquake Loss Assessment (SP-BELA) Method for Masonry Buildings. International Journal of Architectural Heritage, 2008, 2, 353-376.	3.1	111
86	Displacement-Based Earthquake Loss Assessment for an Earthquake Scenario in Istanbul. Journal of Earthquake Engineering, 2008, 12, 12-22.	2.5	41
87	Comparison of Two Mechanics-Based Methods for Simplified Structural Analysis in Vulnerability Assessment. Advances in Civil Engineering, 2008, 2008, 1-19.	0.7	9
88	Modelling inelastic buckling of reinforcing bars under earthquake loading. Structures and Infrastructures Series, 2008, , 347-361.	0.2	2
89	Assessment of Stone Arch Bridges under Static Loading Using Analytical Techniques. , 2007, , 1.		2
90	Preliminary Study on the Impact of the Introduction of an Updated Seismic Hazard Model for Italy. Journal of Earthquake Engineering, 2007, 11, 89-118.	2.5	1

#	Article	IF	CITATIONS
91	Using Pushover Analysis for Assessment of Buildings and Bridges. , 2007, , 91-120.		4
92	A Prioritization Scheme for Seismic Intervention in School Buildings in Italy. Earthquake Spectra, 2007, 23, 291-314.	3.1	79
93	Nonlinear Dynamic Analysis of Structures Subjected to Seismic Action. , 2007, , 63-89.		14
94	A comparison of single-run pushover analysis techniques for seismic assessment of bridges. Earthquake Engineering and Structural Dynamics, 2007, 36, 1347-1362.	4.4	54
95	Flexure-Shear Fiber Beam-Column Elements for Modeling Frame Structures Under Seismic Loading — State of the Art. Journal of Earthquake Engineering, 2007, 11, 46-88.	2.5	86
96	An adaptive capacity spectrum method for assessment of bridges subjected to earthquake action. Bulletin of Earthquake Engineering, 2007, 5, 377-390.	4.1	101
97	Modelling liquefaction-induced building damage in earthquake loss estimation. Soil Dynamics and Earthquake Engineering, 2006, 26, 15-30.	3.8	85
98	Seismic response of continuous span bridges through fiber-based finite element analysis. Earthquake Engineering and Engineering Vibration, 2006, 5, 119-131.	2.3	43
99	Adapting earthquake actions in Eurocode 8 for performance-based seismic design. Earthquake Engineering and Structural Dynamics, 2006, 35, 39-55.	4.4	61
100	A COMPARATIVE STUDY OF DISPLACEMENT, FORCE AND PUSHOVER APPROACHES FOR DESIGN OF CONTINUOUS SPAN BRIDGES. , 2006, , 379-394.		1
101	USING A DISPLACEMENT-BASED APPROACH FOR EARTHQUAKE LOSS ESTIMATION. , 2006, , 489-504.		3
102	The impact of epistemic uncertainty on an earthquake loss model. Earthquake Engineering and Structural Dynamics, 2005, 34, 1653-1685.	4.4	72
103	A METHODOLOGY FOR SEISMIC VULNERABILITY OF MASONRY ARCH BRIDGE WALLS. Journal of Earthquake Engineering, 2005, 9, 331-353.	2.5	26
104	Assessment of building response to liquefaction-induced differential ground deformation. Bulletin of the New Zealand Society for Earthquake Engineering, 2005, 38, 215-234.	0.5	17
105	PERIOD-HEIGHT RELATIONSHIP FOR EXISTING EUROPEAN REINFORCED CONCRETE BUILDINGS. Journal of Earthquake Engineering, 2004, 8, 93-119.	2.5	78
106	Seismic hazard assessments, seismic design codes, and earthquake engineering in El Salvador. , 2004, , .		2
107	Title is missing!. Journal of Earthquake Engineering, 2004, 8, 93.	2.5	34
108	A Probabilistic Displacement-based Vulnerability Assessment Procedure for Earthquake Loss Estimation. Bulletin of Earthquake Engineering, 2004, 2, 173-219.	4.1	185

#	Article	IF	CITATIONS
109	Title is missing!. Journal of Earthquake Engineering, 2004, 8, 497.	2.5	8
110	Title is missing!. Journal of Earthquake Engineering, 2004, 8, 643.	2.5	15
111	DEVELOPMENT AND VERIFICATION OF A DISPLACEMENT-BASED ADAPTIVE PUSHOVER PROCEDURE. Journal of Earthquake Engineering, 2004, 8, 643-661.	2.5	277
112	ADVANTAGES AND LIMITATIONS OF ADAPTIVE AND NON-ADAPTIVE FORCE-BASED PUSHOVER PROCEDURES. Journal of Earthquake Engineering, 2004, 8, 497-522.	2.5	181
113	Title is missing!. Journal of Earthquake Engineering, 2003, 7, 107.	2.5	3
114	DEVELOPMENT OF A SIMPLIFIED DEFORMATION-BASED METHOD FOR SEISMIC VULNERABILITY ASSESSMENT. Journal of Earthquake Engineering, 2003, 7, 107-140.	2.5	51
115	REPAIR AND RETROFITTING OF RC WALLS USING SELECTIVE TECHNIQUES. Journal of Earthquake Engineering, 1998, 2, 525-568.	2.5	31
116	Comparative nonlinear soil-structure interaction analyses using macro-element and soil-block modelling approaches. Bulletin of Earthquake Engineering, 0, , 1.	4.1	1