List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8459288/publications.pdf Version: 2024-02-01

SHINYA MAENOSONO

#	Article	IF	CITATIONS
1	Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker. Biochemical and Biophysical Research Communications, 2003, 302, 496-501.	2.1	316
2	Synthesis of core-shell gold coated magnetic nanoparticles and their interaction with thiolated DNA. Nanoscale, 2010, 2, 2624.	5.6	195
3	Theoretical Assessment of FePt Nanoparticles as Heating Elements for Magnetic Hyperthermia. IEEE Transactions on Magnetics, 2006, 42, 1638-1642.	2.1	188
4	Doxorubicin loaded dual pH- and thermo-responsive magnetic nanocarrier for combined magnetic hyperthermia and targeted controlled drug delivery applications. Nanoscale, 2016, 8, 12152-12161.	5.6	173
5	Growth of a Semiconductor Nanoparticle Ring during the Drying of a Suspension Droplet. Langmuir, 1999, 15, 957-965.	3.5	161
6	Synthesis of magnetic cobalt ferrite nanoparticles with controlled morphology, monodispersity and composition: the influence of solvent, surfactant, reductant and synthetic conditions. Nanoscale, 2015, 7, 19596-19610.	5.6	140
7	Overview of Nanoparticle Array Formation by Wet Coating. Journal of Nanoparticle Research, 2003, 5, 5-15.	1.9	129
8	Superparamagnetic FePt nanoparticles as excellent MRI contrast agents. Journal of Magnetism and Magnetic Materials, 2008, 320, L79-L83.	2.3	109
9	Synthesis and Characterization of Magnetic Nanoalloys from Bimetallic Carbonyl Clusters. Chemistry of Materials, 2009, 21, 3021-3026.	6.7	99
10	Silver nanoparticle loaded TiO 2 nanotubes with high photocatalytic and antibacterial activity synthesized by photoreduction method. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 352, 106-112.	3.9	96
11	Role of base in the formation of silver nanoparticles synthesized using sodium acrylate as a dual reducing and encapsulating agent. Physical Chemistry Chemical Physics, 2011, 13, 9335.	2.8	87
12	Chemical synthesis of blue-emitting metallic zinc nano-hexagons. CrystEngComm, 2013, 15, 6606.	2.6	86
13	Photoinduced Fluorescence Enhancement in Mono- and Multilayer Films of CdSe/ZnS Quantum Dots:Â Dependence on Intensity and Wavelength of Excitation Light. Journal of Physical Chemistry B, 2005, 109, 8613-8618.	2.6	77
14	Synthesis and surface functionalization of Fe 3 O 4 -SiO 2 core-shell nanoparticles with 3-glycidoxypropyltrimethoxysilane and 1,1′-carbonyldiimidazole for bio-applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 504, 376-383.	4.7	75
15	Photoinduced Fluorescence Enhancement in CdSe/ZnS Quantum Dot Submonolayers Sandwiched between Insulating Layers:A Influence of Dot Proximity. Journal of Physical Chemistry B, 2004, 108, 13258-13264.	2.6	72
16	X-ray Absorption Near-Edge Structure and X-ray Photoelectron Spectroscopy Studies of Interfacial Charge Transfer in Gold–Silver–Gold Double-Shell Nanoparticles. Journal of Physical Chemistry C, 2012, 116, 4511-4516.	3.1	69
17	Facile synthesis of Mn-doped NiCo ₂ O ₄ nanoparticles with enhanced electrochemical performance for a battery-type supercapacitor electrode. Dalton Transactions, 2020, 49, 6718-6729.	3.3	63
18	Formation Mechanism of FePt Nanoparticles Synthesized via Pyrolysis of Iron(III) Ethoxide and Platinum(II) Acetylacetonate. Chemistry of Materials, 2005, 17, 6624-6634.	6.7	59

#	Article	IF	CITATIONS
19	Electronic transfer as a route to increase the chemical stability in gold and silver core–shell nanoparticles. Advances in Colloid and Interface Science, 2012, 185-186, 14-33.	14.7	55
20	Chemical stabilization of gold coated by silver core–shell nanoparticles via electron transfer. Nanotechnology, 2012, 23, 245704.	2.6	55
21	Mutagenicity of water-soluble ZnO nanoparticles in Ames test. Journal of Toxicological Sciences, 2009, 34, 119-122.	1.5	54
22	MUTAGENICITY OF WATER-SOLUBLE FePt NANOPARTICLES IN AMES TEST. Journal of Toxicological Sciences, 2007, 32, 575-579.	1.5	53
23	Charge-transfer-induced suppression of galvanic replacement and synthesis of (Au@Ag)@Au double shell nanoparticles for highly uniform, robust and sensitive bioprobes. Applied Physics Letters, 2011, 99, 073107.	3.3	50
24	Optical Memory Media Based on Excitation-Time Dependent Luminescence from a Thin Film of Semiconductor Nanocrystals. Japanese Journal of Applied Physics, 2000, 39, 4006-4012.	1.5	49
25	Aqueous synthesis and characterization of Ag and Ag–Au nanoparticles: addressing challenges in size, monodispersity and structure. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 4275-4292.	3.4	49
26	FePt Nanoparticles with a Narrow Composition Distribution Synthesized via Pyrolysis of Iron(III) Ethoxide and Platinum(II) Acetylacetonate. Chemistry of Materials, 2005, 17, 3705-3710.	6.7	48
27	Heteroatom-Doped Carbon Electrocatalysts Derived from Nanoporous Two-Dimensional Covalent Organic Frameworks for Oxygen Reduction and Hydrogen Evolution. ACS Applied Nano Materials, 2020, 3, 5481-5488.	5.0	46
28	Modeling photoinduced fluorescence enhancement in semiconductor nanocrystal arrays. Chemical Physics Letters, 2003, 376, 666-670.	2.6	45
29	<i>In Situ</i> Time-Resolved XAFS Study on the Formation Mechanism of Cu Nanoparticles Using Poly(<i>N</i> -vinyl-2-pyrrolidone) as a Capping Agent. Langmuir, 2010, 26, 4473-4479.	3.5	42
30	Cation Distribution in Monodispersed MFe ₂ O ₄ (M = Mn, Fe, Co, Ni, and Zn) Nanoparticles Investigated by X-ray Absorption Fine Structure Spectroscopy: Implications for Magnetic Data Storage, Catalysts, Sensors, and Ferrofluids. ACS Applied Nano Materials, 2020, 3, 8389-8402.	5.0	42
31	Self-Assembling Process of Colloidal Particles into Two-Dimensional Arrays Induced by Capillary Immersion Force: A Simulation Study With Discrete Element Method. Journal of Nanoparticle Research, 2003, 5, 103-110.	1.9	38
32	Solution-processed polymer-free photovoltaic devices consisting of PbSe colloidal quantum dots and tetrabenzoporphyrins. Applied Physics Letters, 2008, 92, .	3.3	38
33	Influence of surface ligands on saturation magnetization of FePt nanoparticles. Applied Physics Letters, 2008, 92, .	3.3	37
34	Synthesis of high-quality Al-doped ZnO nanoink. Journal of Applied Physics, 2010, 107, .	2.5	37
35	Surface-enhanced Raman spectroscopy for facile DNA detection using gold nanoparticle aggregates formed via photoligation. Analyst, The, 2010, 135, 595.	3.5	37
36	Structure of Gold–Silver Nanoparticles. Journal of Physical Chemistry C, 2017, 121, 1957-1963.	3.1	36

#	Article	IF	CITATIONS
37	Catalytic activation of peroxymonosulfate with manganese cobaltite nanoparticles for the degradation of organic dyes. RSC Advances, 2020, 10, 3775-3788.	3.6	36
38	Plasmon induced magneto-optical enhancement in metallic Ag/FeCo core/shell nanoparticles synthesized by colloidal chemistry. Nanoscale, 2018, 10, 18672-18679.	5.6	34
39	Nonlinear Photoluminescence Behavior in Closely Packed CdSe Nanocrystal Thin Films. Japanese Journal of Applied Physics, 2001, 40, L638-L641.	1.5	33
40	Effect of growth conditions on the structure of two-dimensional latex crystals: modeling. Colloid and Polymer Science, 1999, 277, 1152-1161.	2.1	32
41	Near-field optical recording on a CdSe nanocrystal thin film. Nanotechnology, 2003, 14, 69-72.	2.6	32
42	Synthesis of Fine-Tuning Highly Magnetic Fe@Fe _{<i>x</i>} O _{<i>y</i>} Nanoparticles through Continuous Injection and a Study of Magnetic Hyperthermia. Chemistry of Materials, 2018, 30, 8897-8904.	6.7	32
43	Metal (Au, Pt) Nanoparticle–Latex Nanocomposites as Probes for Immunochromatographic Test Strips with Enhanced Sensitivity. ACS Applied Materials & Interfaces, 2018, 10, 31977-31987.	8.0	32
44	Ag/FeCo/Ag Core/Shell/Shell Magnetic Nanoparticles with Plasmonic Imaging Capability. Langmuir, 2015, 31, 2228-2236.	3.5	31
45	Evaluation of genotoxicity of amine-terminated water-dispersible FePt nanoparticles in the Ames test and in vitro chromosomal aberration test. Journal of Toxicological Sciences, 2009, 34, 349-354.	1.5	28
46	Intensification of surface enhanced Raman scattering of thiol-containing molecules using Ag@Au core@shell nanoparticles. Journal of Applied Physics, 2011, 109, .	2.5	28
47	High-performance nonvolatile write-once-read-many-times memory devices with ZnO nanoparticles embedded in polymethylmethacrylate. Applied Physics Letters, 2011, 99, .	3.3	28
48	One-pot synthesis and characterization of well defined core–shell structure of FePt@CdSe nanoparticles. RSC Advances, 2011, 1, 100.	3.6	27
49	COFâ€Đerived N,P Coâ€Đoped Carbon as a Metalâ€Free Catalyst for Highly Efficient Oxygen Reduction Reaction. ChemNanoMat, 2019, 5, 957-963.	2.8	26
50	Oscillating Fluorescence in an Unstable Colloidal Dispersion of CdSe/ZnS Core/Shell Quantum Dots. Langmuir, 2004, 20, 8916-8923.	3.5	24
51	Control of preferred (222) crystalline orientation of sputtered indium tin oxide thin films. Thin Solid Films, 2014, 570, 16-19.	1.8	24
52	Formation of Pt decorated Ni–Pt nanocubes through low temperature atomic diffusion – time-resolved elemental analysis of nanoparticle formation. Nanoscale, 2015, 7, 9927-9934.	5.6	24
53	Comparative trial of saccharin-added electrolyte for improving the structure of an electrodeposited magnetic FeCoNi thin film. Thin Solid Films, 2017, 642, 51-57.	1.8	24
54	Microstructure of Silica Particle Monolayer Films Formed by Capillary immersion Force. Journal of Nanoparticle Research, 2003, 5, 111-117.	1.9	23

#	Article	IF	CITATIONS
55	Effect of diamine treatment on the conversion efficiency of PbSe colloidal quantum dot solar cells. Solid State Communications, 2009, 149, 1853-1855.	1.9	23
56	Boehmite nanorod/gold nanoparticle nanocomposite film for an easy-to-use optical humidity sensor. Sensors and Actuators B: Chemical, 2012, 168, 429-435.	7.8	23
57	Enhanced Electronic Properties of Pt@Ag Heterostructured Nanoparticles. Sensors, 2013, 13, 7813-7826.	3.8	23
58	Photoinduced fluorescence enhancement in CdSeâ^•ZnS quantum dot monolayers: Influence of substrate. Applied Physics Letters, 2006, 89, 031910.	3.3	22
59	Synthesis of delafossite CuAlO2 p-type semiconductor with a nanoparticle-based Cu(I) acetate-loaded boehmite precursor. Materials Research Bulletin, 2011, 46, 1819-1827.	5.2	22
60	Magnetic–Plasmonic FePt@Ag Core–Shell Nanoparticles and Their Magnetic and SERS Properties. Plasmonics, 2013, 8, 1177-1184.	3.4	22
61	Formation mechanism of magnetic–plasmonic Ag@FeCo@Ag core–shell–shell nanoparticles: fact is more interesting than fiction. CrystEngComm, 2015, 17, 6923-6929.	2.6	22
62	Amine-terminated water-dispersible FePt nanoparticles. Journal of Magnetism and Magnetic Materials, 2008, 320, L121-L124.	2.3	20
63	Multicore magnetic FePt nanoparticles: controlled formation and properties. RSC Advances, 2014, 4, 1039-1044.	3.6	20
64	Rapid Millifluidic Synthesis of Stable High Magnetic Moment Fe _{<i>x</i>} C _{<i>y</i>} Nanoparticles for Hyperthermia. ACS Applied Materials & Interfaces, 2020, 12, 28520-28531.	8.0	20
65	Self-Organized Pattern Formation of a Bacteria Colony Modeled by a Reaction Diffusion System and Nucleation Theory. Physical Review Letters, 2003, 90, 258102.	7.8	19
66	Bismuth, antimony and tellurium alloy nanoparticles with controllable shape and composition for efficient thermoelectric devices. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 52-58.	1.8	19
67	Influence of addition of indium and of post-annealing on structural, electrical and optical properties of gallium-doped zinc oxide thin films deposited by direct-current magnetron sputtering. Thin Solid Films, 2015, 583, 201-204.	1.8	19
68	Copper Sulfide–Zinc Sulfide Janus Nanoparticles and Their Seebeck Characteristics for Sustainable Thermoelectric Materials. Journal of Physical Chemistry C, 2016, 120, 5869-5875.	3.1	19
69	Organometallic Synthesis of InP Quantum Dots Using Tris(dimethylamino)phosphine as a Phosphorus Source. Chemistry Letters, 2004, 33, 1492-1493.	1.3	18
70	Chemical ordering of FePt nanoparticles by pulsed laser annealing. Journal of Physics Condensed Matter, 2004, 16, 6385-6394.	1.8	18
71	Microwave-Assisted Polyol Synthesis of Pt/Pd and Pt/Rh Bimetallic Nanoparticles in Polymer Solutions Prepared by Batch and Continuous-Flow Processing. Industrial & Engineering Chemistry Research, 2018, 57, 179-190.	3.7	18
72	Exchange bias in Ag/FeCo/Ag core/shell/shell nanoparticles due to partial oxidation of FeCo intermediate shell. Journal of Magnetism and Magnetic Materials, 2016, 401, 339-344.	2.3	17

#	Article	IF	CITATIONS
73	Sustainable thermoelectric materials fabricated by using Cu2Sn1- <i>x</i> Zn <i>x</i> S3 nanoparticles as building blocks. Applied Physics Letters, 2017, 111, .	3.3	16
74	Direct measurement of the viscous force between two spherical particles trapped in a thin wetting film. Colloid and Polymer Science, 1999, 277, 993-996.	2.1	15
75	Growth dynamics of Bacillus circulans colony. Journal of Theoretical Biology, 2003, 225, 91-97.	1.7	15
76	Study on formation mechanism and ligand-directed architectural control of nanoparticles composed of Bi, Sb and Te: towards one-pot synthesis of ternary (Bi,Sb)2Te3 nanobuilding blocks. RSC Advances, 2011, 1, 1089.	3.6	14
77	AuFePt Ternary Homogeneous Alloy Nanoparticles with Magnetic and Plasmonic Properties. Langmuir, 2017, 33, 1687-1694.	3.5	14
78	A Study on the Plasmonic Properties of Silver Core Gold Shell Nanoparticles: Optical Assessment of the Particle Structure. Japanese Journal of Applied Physics, 2011, 50, 065004.	1.5	13
79	Novel nickel–palladium catalysts encased in a platinum nanocage. RSC Advances, 2014, 4, 26667-26672.	3.6	13
80	Enhancement of the Thermoelectric Figure of Merit in Blended Cu ₂ Sn _{1–<i>x</i>} Zn _{<i>x</i>} S ₃ Nanobulk Materials. ACS Applied Nano Materials, 2018, 1, 4819-4827.	5.0	13
81	Quick and Mild Isolation of Intact Lysosomes Using Magnetic–Plasmonic Hybrid Nanoparticles. ACS Nano, 2022, 16, 885-896.	14.6	13
82	The mode transition of the bacterial colony. Physica A: Statistical Mechanics and Its Applications, 2002, 313, 609-624.	2.6	12
83	Peak shape analysis of Ag 3d coreâ€level Xâ€ray photoelectron spectra of Au@Ag coreâ€shell nanoparticles using an asymmetric Gaussian–Lorentzian mixed function. Surface and Interface Analysis, 2012, 44, 1611-1614.	1.8	12
84	Nearâ€Infraredâ€Emitting Cd _{<i>x</i>} Hg _{1â^`<i>x</i>} Se Nanorods Fabricated by Ion Exchange in an Aqueous Medium. ChemPhysChem, 2013, 14, 2853-2858.	2.1	12
85	Colloid Chemical Approach for Fabricating Cu–Fe–S Nanobulk Thermoelectric Materials by Blending Cu ₂ S and FeS Nanoparticles as Building Blocks. Industrial & Engineering Chemistry Research, 2019, 58, 3688-3697.	3.7	12
86	Angular dependence in the transmittance from self-organized striped pattern of refractive indices in photopolymer. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 216-225.	2.1	11
87	Nonlinear Time-Series Analysis of Photoinduced Fluorescence Oscillation in a Water Dispersion of Colloidal Quantum Dots. Journal of Physical Chemistry B, 2003, 107, 2645-2650.	2.6	11
88	Monte-Carlo simulations of photoinduced fluorescence enhancement in semiconductor quantum dot arrays. Chemical Physics Letters, 2005, 405, 182-186.	2.6	11
89	Intensified blinking, continuous memory loss, and fluorescence enhancement of interacting light-emission quantum dots. Physical Review B, 2009, 80, .	3.2	11
90	Ultrafast Exciton Dynamics in Cd x Hg (1 â^' x) Te alloy Quantum Dots. Chemical Physics, 2016, 469-470, 25-30.	1.9	10

#	Article	IF	CITATIONS
91	Elucidation of the Complex Structure of Nanoparticles Composed of Bismuth, Antimony, and Tellurium Using Scanning Transmission Electron Microscopy. Journal of Physical Chemistry C, 2011, 115, 17334-17340.	3.1	9
92	Chalcopyrite nanocomposite material for sustainable thermoelectrics. Japanese Journal of Applied Physics, 2014, 53, 120301.	1.5	9
93	Gram-Scale Synthesis of Tetrahedrite Nanoparticles and Their Thermoelectric Properties. Langmuir, 2019, 35, 16335-16340.	3.5	9
94	Development of magnetic separation system of magnetoliposomes. Physica C: Superconductivity and Its Applications, 2009, 469, 1840-1844.	1.2	8
95	Chalcopyrite Nanoparticles as a Sustainable Thermoelectric Material. Nanomaterials, 2015, 5, 1820-1830.	4.1	8
96	Following the Formation of Silver Nanoparticles Using <i>In Situ</i> X-ray Absorption Spectroscopy. ACS Omega, 2020, 5, 13664-13671.	3.5	8
97	Enhancing the Sensitivity of Lateral Flow Immunoassay by Magnetic Enrichment Using Multifunctional Nanocomposite Probes. Langmuir, 2021, 37, 6566-6577.	3.5	8
98	Collective Fluorescence Oscillation in a Water Dispersion of Colloidal Quantum Dots. Japanese Journal of Applied Physics, 2003, 42, L310-L313.	1.5	7
99	One-pot Chemical Synthesis of Zinc Antimonide Nanoparticles as Building Blocks for Nanostructured Thermoelectric Materials. Chemistry Letters, 2012, 41, 1529-1531.	1.3	7
100	Nanobulk Thermoelectric Materials Fabricated from Chemically Synthesized Cu ₃ Zn _{1–<i>x</i>} Al _{<i>x</i>} SnS _{5–<i>y</i>} Nanocrystals. ACS Omega, 2019, 4, 16402-16408.	3.5	7
101	Effects of Frictional Force on the Formation of Colloidal Particle Monolayer during Drying–Study Using Discrete Element Method– [Translated] ^{â€} . KONA Powder and Particle Journal, 2006, 24, 192-202.	1.7	7
102	One-pot synthesis of Au-M@SiO2 (M = Rh, Pd, Ir, Pt) core–shell nanoparticles as highly efficient catalysts for the reduction of 4-nitrophenol. Scientific Reports, 2022, 12, 7615.	3.3	7
103	Different Directions of Switching of Chromium Oxide Thin Films. Journal of Electronic Materials, 2014, 43, 2747-2753.	2.2	6
104	Magnetic Separation of Autophagosomes from Mammalian Cells Using Magnetic–Plasmonic Hybrid Nanobeads. ACS Omega, 2017, 2, 4929-4937.	3.5	6
105	A Study on the Plasmonic Properties of Silver Core Gold Shell Nanoparticles: Optical Assessment of the Particle Structure. Japanese Journal of Applied Physics, 2011, 50, 065004.	1.5	6
106	Heat-Up Colloidal Synthesis of Shape-Controlled Cu-Se-S Nanostructures—Role of Precursor and Surfactant Reactivity and Performance in N2 Electroreduction. Nanomaterials, 2021, 11, 3369.	4.1	6
107	Spontaneous photoluminescence oscillation in a colloidal dispersion of CdSe/ZnS core/shell nanocrystals. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 24, 74-77.	2.7	5
108	Gold/Wüstite Core–shell Nanoparticles: Suppression of Iron Oxidation through the Electronâ€Transfer Phenomenon. ChemPhysChem, 2013, 14, 3278-3283.	2.1	5

#	Article	IF	CITATIONS
109	Attenuation of surface-enhanced Raman scattering of magnetic–plasmonic FePt@Ag core–shell nanoparticles due to an external magnetic field. Chemical Physics Letters, 2013, 574, 94-99.	2.6	5
110	An influence of bottom electrode material on electrical conduction and resistance switching of TiO _x thin films. EPJ Applied Physics, 2013, 64, 30102.	0.7	5
111	Quantitative two-dimensional strain mapping of small core–shell FePt@Fe ₃ O ₄ nanoparticles. New Journal of Physics, 2016, 18, 033016.	2.9	5
112	Equiatomic FePt nanoparticles synthesized via pyrolysis of iron(III) ethoxide and platinum(II) acetylacetonate. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 1206-1210.	1.8	4
113	Influence of surface ligands on the electronic structure of Fe-Pt clusters: A density functional theory study. Physical Review B, 2011, 83, .	3.2	4
114	Synthesis and Characterization of Copper Sulfideâ€Manganese Sulfide Nanoparticles with Chestnut Morphology and Study on the Semiconducting Properties. ChemistrySelect, 2019, 4, 3898-3904.	1.5	4
115	Photoinduced fluorescence intensity oscillation in a reaction-diffusion cell containing a colloidal quantum dot dispersion. Journal of Chemical Physics, 2006, 125, 114705.	3.0	3
116	Wet-chemical preparation of digold bismuthide, gold diantimonide, and gold ditelluride particles. Journal of Materials Research, 2013, 28, 2106-2112.	2.6	3
117	Transition of exchange bias from the linear to oscillatory regime with the progression of surface oxidation of Ag@FeCo@Ag core@shell@shell nanoparticles. Journal of Applied Physics, 2016, 120, 134301.	2.5	3
118	Field-induced control of universal fluorescence intermittency of a quantum dot light emitter. Journal of Chemical Physics, 2010, 133, 074703.	3.0	2
119	Next Generation Magnetic Nanoparticles for Biomedical Applications. , 2012, , 99-126.		2
120	Chemical Synthesis of Binary Solid Solution Bismuth–Antimony Nanoparticles with Control of Composition and Morphology. Chemistry Letters, 2014, 43, 615-617.	1.3	2
121	Characterization of Metallic Nanoparticles Based on the Abundant Usages of X-ray Techniques. , 2015, , 1-24.		2
122	Effect of Gallium Substitution in Cu ₃ Al _{1–<i>x</i>} Ga _{<i>x</i>} SnS ₅ Nanobulk Materials on Thermoelectric Properties. ACS Applied Energy Materials, 2020, 3, 5784-5791.	5.1	2
123	Environmental STEM Study of the Oxidation Mechanism for Iron and Iron Carbide Nanoparticles. Materials, 2022, 15, 1557.	2.9	2
124	Effect of Frictional Force on the Formation of Colloidal Particle Monolayer During Drying-Study Using Discrete Element Method Journal of the Society of Powder Technology, Japan, 2004, 41, 465-472.	0.1	1
125	Observation of conductive filament formation in an organic non-volatile memory resistor device. , 2012, , .		1
126	FePt Nanoparticles as Promising Magnetic Nanobeads for Biomedical Applications. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2014, 61, S104-S110.	0.2	1

#	Article	IF	CITATIONS
127	Nanoparticle Building Blocks as a Foundation for Advanced Thermoelectric Energy Generators. ACS Symposium Series, 2015, , 41-54.	0.5	1
128	Harvesting Nanocatalytic Heat Localized in Nanoalloy Catalyst as a Heat Source in a Nanocomposite Thin Film Thermoelectric Device. Langmuir, 2015, 31, 11158-11163.	3.5	1
129	A study of the properties of core/shell/shell Ag/FeCo/Ag nanoparticles. Physics of the Solid State, 2017, 59, 2023-2029.	0.6	1
130	Synthesis and Characterization of Magneticâ \in "Plasmonic Hybrid Nanoparticles. , 2019, , 61-82.		1
131	Thermoelectric properties of paracostibite fabricated using chemically synthesized Co–Sb–S nanoparticles as building blocks. AIP Advances, 2020, 10, .	1.3	1
132	Preparation of Al-doped ZnO Nanoparticulate Film for Optoelectronic Applications. Materials Research Society Symposia Proceedings, 2010, 1247, 1.	0.1	1
133	Evaporation-Induced Self-Assembly of Colloidal Particles into Two-Dimensional Array during Drying. , 2002, , 255.		Ο
134	Synthesis of Size and Shape Controlled Silver Nanoparticles Coated by a Thin Layer of Gold and Their Use as Ultrasensitive Biomolecular Probes. Materials Research Society Symposia Proceedings, 2010, 1253, 4.	0.1	0
135	Assembly of Ag@Au Nanoparticles Using Complementery Stranded DNA Molecules and Their Detection Using UV-Vis and RAMAN Spectroscopic Techniques. Materials Research Society Symposia Proceedings, 2010, 1272, 1.	0.1	Ο
136	Design and Synthesis of One and Two Dimensional Thermoelectric Nanomaterials Composed of Bismuth, Antimony, and Tellurium. Materials Research Society Symposia Proceedings, 2010, 1267, 1.	0.1	0
137	Synthesis, Fabrication, and Characterization of Multidimensional Nanoparticle Based Thermoelectric Materials Composed of Bismuth, Antimony, and Tellurium Materials Research Society Symposia Proceedings, 2011, 1329, 1.	0.1	Ο
138	Back Cover: Bismuth, antimony and tellurium alloy nanoparticles with controllable shape and composition for efficient thermoelectric devices (Phys. Status Solidi A 1/2011). Physica Status Solidi (A) Applications and Materials Science, 2011, 208, .	1.8	0
139	True Atomic Level Imaging of Shaped Nanoparticles Composed of Bismuth, Antimony and Tellurium using Scanning Transmission Electron Microscopy Materials Research Society Symposia Proceedings, 2011, 1349, 140201.	0.1	0
140	Manipulation of the Electronic Properties of Gold and Silver Coreâ^'Shell Nanoparticles. ACS Symposium Series, 2012, , 327-358.	0.5	0
141	B22-P-07Structural Analysis of Au Doped Titanium Disilicide using Cs-corrected Scanning Transmission Electron Microscopy. Microscopy (Oxford, England), 2015, 64, i106.1-i106.	1.5	Ο
142	Preface: The Irago Conference 2014: A 360 Degree Outlook at Critical Scientific and Technological Challenges for a Sustainable Society. , 2015, , .		0
143	Synthesis and Biomedical Applications of Multifunctional Magnetic Nanoparticles. Hyomen Kagaku, 2017, 38, 35-41.	0.0	0
144	Plasmonic–magnetic dual-functional graded nanoparticles with oxide shell passivation designed for bioapplications. Applied Physics Express, 2018, 11, 105001.	2.4	0

#	Article	IF	CITATIONS
145	Editorial: Modern Chemical Routes for Controlled Synthesis of Bimetallic Nanostructures. Frontiers in Chemistry, 2021, 9, 640665.	3.6	0
146	Characterization of Metallic Nanoparticles Based on the Abundant Usages of X-ray Techniques. , 2016, , 217-244.		0
147	Magnetic Nanoparticles for Organelle Separation. , 2018, , 229-246.		0
148	Development of Coloration Technique for Gold Leaf Using Gold Nanoparticles as Coloring Materials and Porous Titanium Dioxide Thin Film as a Binder. Journal of the Japan Society of Colour Material, 2020, 93, 101-104.	0.1	0
149	A Robust Nanoparticle-based Magnetic Separation Method for Intact Lysosomes. Bio-protocol, 2022, 12,	0.4	0