Xinggang Hou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8458881/publications.pdf

Version: 2024-02-01

840776 713466 23 472 11 21 citations h-index g-index papers 23 23 23 769 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Photoelectrochemical nitrogen reduction: A step toward achieving sustainable ammonia synthesis. Chinese Journal of Catalysis, 2022, 43, 1761-1773.	14.0	7
2	Photoâ€rechargeable batteries and supercapacitors: Critical roles of carbonâ€based functional materials. , 2021, 3, 225-252.		41
3	Cu-lon-Implanted and Polymeric Carbon Nitride-Decorated TiO ₂ Nanotube Array for Unassisted Photoelectrochemical Water Splitting. ACS Applied Materials & Samp; Interfaces, 2021, 13, 44184-44194.	8.0	32
4	Novel integrated strategies toward efficient and stable unassisted photoelectrochemical water splitting. Sustainable Materials and Technologies, 2020, 25, e00209.	3.3	14
5	Enhanced photoelectrocatalytic degradation of organic pollutants using TiO2 nanotubes implanted with nitrogen ions. Journal of Materials Science, 2020, 55, 5843-5860.	3.7	18
6	Experimental and computational study of visible light-induced photocatalytic ability of nitrogen ions-implanted TiO2 nanotubes. Chinese Physics B, 2020, 29, 048501.	1.4	1
7	Hydrophilic, antibacterial and photocatalytic properties of TiO2 composite films modified by the methods of N+ ion implantation and doping of CNTs under visible light irradiation. Surface and Coatings Technology, 2019, 365, 123-128.	4.8	16
8	Simultaneously efficient light absorption and charge transport of CdS/TiO2 nanotube array toward improved photoelectrochemical performance. International Journal of Hydrogen Energy, 2019, 44, 30899-30909.	7.1	30
9	Cytocompatibility and antibacterial property of N+ ions implanted TiO2 nanotubes. Surface and Coatings Technology, 2019, 359, 468-475.	4.8	8
10	G-C3N4-based films: A rising star for photoelectrochemical water splitting. Sustainable Materials and Technologies, 2019, 19, e00089.	3.3	44
11	Photocurrent enhancement on TiO2 nanotubes co-modified by N+ implantation and combustion of graphene. Materials Letters, 2019, 238, 77-80.	2.6	3
12	Calcination of reduced graphene oxide decorated TiO 2 composites for recovery and reuse in photocatalytic applications. Ceramics International, 2017, 43, 1150-1159.	4.8	39
13	Synthesis of Ag ion-implanted TiO2 thin films for antibacterial application and photocatalytic performance. Journal of Hazardous Materials, 2015, 299, 59-66.	12.4	93
14	Antibacterial ability of Ag–TiO2 nanotubes prepared by ion implantation and anodic oxidation. Materials Letters, 2015, 161, 309-312.	2.6	23
15	Photoelectrical properties of nitrogen doped TiO2 nanotubes by anodic oxidation of N+ implanted Ti foils. Materials Letters, 2014, 124, 101-104.	2.6	11
16	Enhanced superhydrophilicity of N+ implanted multiwalled carbon nanotubes-TiO2 composite thin films. Vacuum, 2014, 100, 74-77.	3.5	9
17	Study of antibacterial, hydrophilic and nanomechanical properties of TiOX films modified by Ag+ beam implantation. Surface and Coatings Technology, 2013, 229, 71-75.	4.8	7
18	Influence of V+-implantation on structural, chemical, optical and nanomechanical properties of TiO2 films. Vacuum, 2013, 89, 147-152.	3 . 5	3

#	Article	IF	CITATIONS
19	The antibacterial and hydrophilic properties of silver-doped TiO2 thin films using sol–gel method. Applied Surface Science, 2012, 258, 8241-8246.	6.1	43
20	THE LAPW CALCULATION OF ELECTRONIC STRUCTURE OF ANATASE TiO₂ DOPED WITH TRANSITION METAL ATOMS. Journal of Theoretical and Computational Chemistry, 2010, 09, 415-422.	1.8	3
21	First-principles calculations on implanted TiO2 by 3d transition metal ions. Science in China Series G: Physics, Mechanics and Astronomy, 2009, 52, 838-842.	0.2	17
22	Application of beam irradiation in preparation of visible light responsive TiO2 films. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2007, 2, 387-392.	0.4	1
23	Studies on photocatalytic activity of Ag/TiO2 films. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2006, 1, 402-407.	0.4	9