List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8458798/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Monetite vs. Brushite: Different Influences on Bone Cell Response Modulated by Strontium<br>Functionalization. Journal of Functional Biomaterials, 2022, 13, 65.                                                            | 4.4  | 10        |
| 2  | Antiosteoporotic Nanohydroxyapatite Zoledronate Scaffold Seeded with Bone Marrow Mesenchymal<br>Stromal Cells for Bone Regeneration: A 3D In Vitro Model. International Journal of Molecular<br>Sciences, 2022, 23, 5988.   | 4.1  | 1         |
| 3  | Hydroxyapatite Decorated with Tungsten Oxide Nanoparticles: New Composite Materials against<br>Bacterial Growth. Journal of Functional Biomaterials, 2022, 13, 88.                                                          | 4.4  | 7         |
| 4  | Synthesis and Hydrolysis of Brushite (DCPD): The Role of Ionic Substitution. Crystal Growth and Design, 2021, 21, 1689-1697.                                                                                                | 3.0  | 35        |
| 5  | Strontium substituted hydroxyapatite with β-lactam integrin agonists to enhance mesenchymal cells<br>adhesion and to promote bone regeneration. Colloids and Surfaces B: Biointerfaces, 2021, 200, 111580.                  | 5.0  | 10        |
| 6  | Novel drug-loaded film forming patch based on gelatin and snail slime. International Journal of<br>Pharmaceutics, 2021, 598, 120408.                                                                                        | 5.2  | 12        |
| 7  | Curcumin-Functionalized Gelatin Films: Antioxidant Materials with Modulated Physico-Chemical<br>Properties. Polymers, 2021, 13, 1824.                                                                                       | 4.5  | 8         |
| 8  | Structural interplay between strontium and calcium in α-CaHPO4 and β-SrHPO4. Ceramics International, 2021, 47, 24412-24420.                                                                                                 | 4.8  | 5         |
| 9  | A radiopaque calcium phosphate bone cement with long-lasting antibacterial effect: From paste to injectable formulation. Ceramics International, 2020, 46, 10048-10057.                                                     | 4.8  | 12        |
| 10 | Functional properties of chitosan films modified by snail mucus extract. International Journal of<br>Biological Macromolecules, 2020, 143, 126-135.                                                                         | 7.5  | 37        |
| 11 | Functionalization of octacalcium phosphate for bone replacement. , 2020, , 37-54.                                                                                                                                           |      | 2         |
| 12 | Platinum nanoparticles supported on functionalized hydroxyapatite: Anti-oxidant properties and bone cells response. Ceramics International, 2020, 46, 19574-19582.                                                          | 4.8  | 3         |
| 13 | Quercetin loaded gelatin films with modulated release and tailored anti-oxidant, mechanical and swelling properties. Food Hydrocolloids, 2020, 109, 106089.                                                                 | 10.7 | 28        |
| 14 | Green synthesis of bioactive oligopeptides promoted by recyclable nanocrystalline hydroxyapatite.<br>Future Medicinal Chemistry, 2020, 12, 479-491.                                                                         | 2.3  | 16        |
| 15 | Cylindrical Layered Bone Scaffolds with Anisotropic Mechanical Properties as Potential Drug<br>Delivery Systems. Molecules, 2019, 24, 1931.                                                                                 | 3.8  | 3         |
| 16 | Multifunctionalization Modulates Hydroxyapatite Surface Interaction with Bisphosphonate:<br>Antiosteoporotic and Antioxidative Stress Materials. ACS Biomaterials Science and Engineering, 2019,<br>5, 3429-3439.           | 5.2  | 14        |
| 17 | Strontium and Zinc Substitution in β-Tricalcium Phosphate: An X-ray Diffraction, Solid State NMR and ATR-FTIR Study. Journal of Functional Biomaterials, 2019, 10, 20.                                                      | 4.4  | 45        |
| 18 | Effect of strontium substituted ßâ€TCP associated to mesenchymal stem cells from bone marrow and adipose tissue on spinal fusion in healthy and ovariectomized rat. Journal of Cellular Physiology, 2019, 234, 20046-20056. | 4.1  | 22        |

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Modulation of Alendronate release from a calcium phosphate bone cement: An in vitro<br>osteoblast-osteoclast co-culture study. International Journal of Pharmaceutics, 2019, 554, 245-255.                                         | 5.2 | 28        |
| 20 | Antiresorptive properties of strontium substituted and alendronate functionalized hydroxyapatite nanocrystals in an ovariectomized rat spinal arthrodesis model. Materials Science and Engineering C, 2019, 95, 355-362.           | 7.3 | 18        |
| 21 | Role of Aspartic and Polyaspartic Acid on the Synthesis and Hydrolysis of Brushite Journal of<br>Functional Biomaterials, 2019, 10, 11.                                                                                            | 4.4 | 20        |
| 22 | A new multifunctionalized material against multi-drug resistant bacteria and abnormal osteoclast activity. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 127, 120-129.                                             | 4.3 | 16        |
| 23 | Non-equilibrium atmospheric pressure plasma as innovative method to crosslink and enhance<br>mucoadhesion of econazole-loaded gelatin films for buccal drug delivery. Colloids and Surfaces B:<br>Biointerfaces, 2018, 163, 73-82. | 5.0 | 31        |
| 24 | Gradient coatings of strontium hydroxyapatite/zinc β-tricalcium phosphate as a tool to modulate osteoblast/osteoclast response. Journal of Inorganic Biochemistry, 2018, 183, 1-8.                                                 | 3.5 | 32        |
| 25 | Biomimetic fabrication of antibacterial calcium phosphates mediated by polydopamine. Journal of<br>Inorganic Biochemistry, 2018, 178, 43-53.                                                                                       | 3.5 | 19        |
| 26 | Spray-congealed solid lipid microparticles as a new tool for the controlled release of<br>bisphosphonates from a calcium phosphate bone cement. European Journal of Pharmaceutics and<br>Biopharmaceutics, 2018, 122, 6-16.        | 4.3 | 17        |
| 27 | Osteoinductivity of nanostructured hydroxyapatiteâ€functionalized gelatin modulated by human and<br>endogenous mesenchymal stromal cells. Journal of Biomedical Materials Research - Part A, 2018, 106,<br>914-923.                | 4.0 | 13        |
| 28 | Combinatorial Laser Synthesis of Biomaterial Thin Films: Selection and Processing for Medical Applications. Springer Series in Materials Science, 2018, , 309-338.                                                                 | 0.6 | 4         |
| 29 | Calcium Phosphates as Delivery Systems for Bisphosphonates. Journal of Functional Biomaterials, 2018, 9, 6.                                                                                                                        | 4.4 | 56        |
| 30 | (9R)-9-Hydroxystearate-Functionalized Anticancer Ceramics Promote Loading of Silver Nanoparticles.<br>Nanomaterials, 2018, 8, 390.                                                                                                 | 4.1 | 11        |
| 31 | Strontiumâ€6ubstituted Hydroxyapatiteâ€Gelatin Biomimetic Scaffolds Modulate Bone Cell Response.<br>Macromolecular Bioscience, 2018, 18, e1800096.                                                                                 | 4.1 | 36        |
| 32 | Antiresorptive and anti-angiogenetic octacalcium phosphate functionalized with bisphosphonates: An<br>in vitro tri-culture study. Acta Biomaterialia, 2017, 54, 419-428.                                                           | 8.3 | 33        |
| 33 | Monocyclic β-lactams loaded on hydroxyapatite: new biomaterials with enhanced antibacterial activity against resistant strains. Scientific Reports, 2017, 7, 2712.                                                                 | 3.3 | 24        |
| 34 | Hydroxyapatite functionalization to trigger adsorption and release of risedronate. Colloids and Surfaces B: Biointerfaces, 2017, 160, 493-499.                                                                                     | 5.0 | 21        |
| 35 | Quercetin and alendronate multiâ€functionalized materials as tools to hinder oxidative stress damage.<br>Journal of Biomedical Materials Research - Part A, 2017, 105, 3293-3303.                                                  | 4.0 | 24        |
| 36 | Gelatin Porous Scaffolds as Delivery Systems of Calcium Alendronate. Macromolecular Bioscience, 2017, 17, 1600272.                                                                                                                 | 4.1 | 9         |

| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Functionalized Biomimetic Calcium Phosphates for Bone Tissue Repair. Journal of Applied Biomaterials and Functional Materials, 2017, 15, e313-e325.                                                                        | 1.6  | 35        |
| 38 | Fast Coprecipitation of Calcium Phosphate Nanoparticles inside Gelatin Nanofibers by Tricoaxial<br>Electrospinning. Journal of Nanomaterials, 2016, 2016, 1-7.                                                             | 2.7  | 7         |
| 39 | Alendronate Functionalized Mesoporous Bioactive Glass Nanospheres. Materials, 2016, 9, 135.                                                                                                                                | 2.9  | 17        |
| 40 | Atmospheric Pressure Non-Equilibrium Plasma as a Green Tool to Crosslink Gelatin Nanofibers.<br>Scientific Reports, 2016, 6, 38542.                                                                                        | 3.3  | 43        |
| 41 | An innovative co-axial system to electrospin <i>in situ</i> crosslinked gelatin nanofibers. Biomedical<br>Materials (Bristol), 2016, 11, 025007.                                                                           | 3.3  | 11        |
| 42 | ( <i>9R</i> )-9-Hydroxystearate-Functionalized Hydroxyapatite as Antiproliferative and Cytotoxic Agent<br>toward Osteosarcoma Cells Langmuir, 2016, 32, 188-194.                                                           | 3.5  | 16        |
| 43 | Antioxidant and bone repair properties of quercetin-functionalized hydroxyapatite: An in vitro<br>osteoblast–osteoclast–endothelial cell co-culture study. Acta Biomaterialia, 2016, 32, 298-308.                          | 8.3  | 70        |
| 44 | Incorporation of nanostructured hydroxyapatite and poly( <i>N</i> -isopropylacrylamide) in<br>demineralized bone matrix enhances osteoblast and human mesenchymal stem cell activity.<br>Biointerphases, 2015, 10, 041001. | 1.6  | 11        |
| 45 | <scp>C</scp> ontinuous multilayered composite hydrogel as osteochondral substitute. Journal of<br>Biomedical Materials Research - Part A, 2015, 103, 2521-2530.                                                            | 4.0  | 24        |
| 46 | Highly Porous Gelatin Reinforced 3D Scaffolds for Articular Cartilage Regeneration.<br>Macromolecular Bioscience, 2015, 15, 941-952.                                                                                       | 4.1  | 28        |
| 47 | Multi‣ayered Scaffolds for Osteochondral Tissue Engineering: In Vitro Response of Coâ€Cultured<br>Human Mesenchymal Stem Cells. Macromolecular Bioscience, 2015, 15, 1535-1545.                                            | 4.1  | 36        |
| 48 | Effect of sterilization and crosslinking on gelatin films. Journal of Materials Science: Materials in<br>Medicine, 2015, 26, 69.                                                                                           | 3.6  | 51        |
| 49 | Strontium and zoledronate hydroxyapatites graded composite coatings for bone prostheses. Journal of Colloid and Interface Science, 2015, 448, 1-7.                                                                         | 9.4  | 51        |
| 50 | Antiresorption implant coatings based on calcium alendronate and octacalcium phosphate deposited<br>by matrix assisted pulsed laser evaporation. Colloids and Surfaces B: Biointerfaces, 2015, 136, 449-456.               | 5.0  | 33        |
| 51 | Combined effect of strontium and zoledronate on hydroxyapatite structure and bone cell responses.<br>Biomaterials, 2014, 35, 5619-5626.                                                                                    | 11.4 | 58        |
| 52 | Co-electrospun gelatin-poly(l-lactic acid) scaffolds: Modulation of mechanical properties and chondrocyte response as a function of composition. Materials Science and Engineering C, 2014, 36, 130-138.                   | 7.3  | 71        |
| 53 | Montmorillonite reinforced type A gelatin nanocomposites. Journal of Applied Polymer Science, 2014, 131, .                                                                                                                 | 2.6  | 15        |
| 54 | Structural reinforcement and failure analysis in composite nanofibers of graphene oxide and gelatin.<br>Carbon, 2014, 78, 566-577.                                                                                         | 10.3 | 81        |

| #  | Article                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Comparative performance of collagen nanofibers electrospun from different solvents and stabilized by different crosslinkers. Journal of Materials Science: Materials in Medicine, 2014, 25, 2313-2321. | 3.6  | 63        |
| 56 | Cationic-anionic polyelectrolyte interaction as a tool to graft silver nanoparticles on hydroxyapatite crystals and prevent cytotoxicity. RSC Advances, 2014, 4, 645-652.                              | 3.6  | 19        |
| 57 | Chondrogenic differentiation of human adipose mesenchimal stem cells: Influence of a biomimetic gelatin genipin crosslinked porous scaffold. Microscopy Research and Technique, 2014, 77, 928-934.     | 2.2  | 23        |
| 58 | Biomaterial Thin Films by Soft Pulsed Laser Technologies for Biomedical Applications. Springer Series in Materials Science, 2014, , 271-294.                                                           | 0.6  | 6         |
| 59 | Crystalline Calcium Alendronate Obtained by Octacalcium Phosphate Digestion: A New Chance for Local Treatment of Bone Loss Diseases?. Advanced Materials, 2013, 25, 4605-4611.                         | 21.0 | 27        |
| 60 | A new simplified calcifying solution to synthesize calcium phosphate coatings. Surface and Coatings<br>Technology, 2013, 232, 13-21.                                                                   | 4.8  | 12        |
| 61 | 3D interconnected porous biomimetic scaffolds: <i>In vitro</i> cell response. Journal of Biomedical<br>Materials Research - Part A, 2013, 101, 3560-3570.                                              | 4.0  | 44        |
| 62 | Role of pH on stability and mechanical properties of gelatin films. Journal of Bioactive and Compatible<br>Polymers, 2012, 27, 67-77.                                                                  | 2.1  | 54        |
| 63 | The effect of alendronate doped calcium phosphates on bone cells activity. Bone, 2012, 51, 944-952.                                                                                                    | 2.9  | 26        |
| 64 | Time Course of Zoledronate Interaction with Hydroxyapatite Nanocrystals. Journal of Physical Chemistry C, 2012, 116, 15812-15818.                                                                      | 3.1  | 17        |
| 65 | Fiber reinforcement of a biomimetic bone cement. Journal of Materials Science: Materials in Medicine, 2012, 23, 1363-1370.                                                                             | 3.6  | 10        |
| 66 | The effect of zoledronate-hydroxyapatite nanocomposites on osteoclasts and osteoblast-like cells inÂvitro. Biomaterials, 2012, 33, 722-730.                                                            | 11.4 | 56        |
| 67 | Magnesium and strontium doped octacalcium phosphate thin films by matrix assisted pulsed laser evaporation. Journal of Inorganic Biochemistry, 2012, 107, 65-72.                                       | 3.5  | 73        |
| 68 | Osteopenic bone cell response to strontium-substituted hydroxyapatite. Journal of Materials Science:<br>Materials in Medicine, 2011, 22, 2079-2088.                                                    | 3.6  | 82        |
| 69 | Biomimetic gelatin–octacalcium phosphate core–shell microspheres. Journal of Colloid and Interface<br>Science, 2011, 362, 594-599.                                                                     | 9.4  | 29        |
| 70 | Electrospun gelatin nanofibers: Optimization of genipin cross-linking to preserve fiber morphology<br>after exposure to water. Acta Biomaterialia, 2011, 7, 1702-1709.                                 | 8.3  | 217       |
| 71 | Optimization of a biomimetic bone cement: Role of DCPD. Journal of Inorganic Biochemistry, 2011, 105, 1060-1065.                                                                                       | 3.5  | 14        |
| 72 | Fast Deposition of Nanocrystalline Hydroxyapatite into Additive Manufactured Titanium Porous<br>Structures. Key Engineering Materials, 2011, 493-494, 458-461.                                         | 0.4  | 0         |

| #  | Article                                                                                                                                                                                         | IF               | CITATIONS           |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------|
| 73 | Chemico-physical characterization of gelatin films modified with oxidized alginate. Acta<br>Biomaterialia, 2010, 6, 383-388.                                                                    | 8.3              | 136                 |
| 74 | Effect of strontium and gelatin on the reactivity of α-tricalcium phosphate. Acta Biomaterialia, 2010, 6,<br>936-942.                                                                           | 8.3              | 31                  |
| 75 | Functionalization of biomimetic calcium phosphate bone cements with alendronate. Journal of<br>Inorganic Biochemistry, 2010, 104, 1099-1106.                                                    | 3.5              | 56                  |
| 76 | lonic substitutions in calcium phosphates synthesized at low temperature. Acta Biomaterialia, 2010, 6,<br>1882-1894.                                                                            | 8.3              | 705                 |
| 77 | Densities, Viscosities, Refractive Indices, and Heat Capacities of Poly(ethylene) Tj ETQq1 1 0.784314 rgBT /Overle<br>Pressure. Journal of Chemical & Engineering Data, 2010, 55, 205-210.      | ock 10 Tf<br>1.9 | 50 587 Td (gl<br>20 |
| 78 | Collapsed Octacalcium Phosphate Stabilized by Ionic Substitutions. Crystal Growth and Design, 2010, 10, 3612-3617.                                                                              | 3.0              | 58                  |
| 79 | Advanced Biomimetic Implants Based on Nanostructured Coatings Synthesized by Pulsed Laser<br>Technologies. Springer Series in Materials Science, 2010, , 235-260.                               | 0.6              | 22                  |
|    | Densities, Viscosities, Refractive Indices, and Heat Capacities of Four Poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock                                                                              | 10 Tf 50 4       | 472 Td (glyco       |
| 80 | at (298.15 and 313.15) K and at Atmospheric Pressure. Journal of Chemical & Engineering Data, 2009,<br>54, 956-961.                                                                             | 1.9              | 3                   |
| 81 | Synthesis and characterization of Sr(10â^'x)Cdx(PO4)6Y2 (Y=OH and F): A comparison of apatites containing two divalent cations. Materials Research Bulletin, 2009, 44, 522-530.                 | 5.2              | 25                  |
| 82 | Interaction of Srâ€doped hydroxyapatite nanocrystals with osteoclast and osteoblastâ€like cells. Journal of Biomedical Materials Research - Part A, 2009, 89A, 594-600.                         | 4.0              | 179                 |
| 83 | Porous composite scaffolds based on gelatin and partially hydrolyzed α-tricalcium phosphate. Acta<br>Biomaterialia, 2009, 5, 636-643.                                                           | 8.3              | 73                  |
| 84 | Alendronate and Pamidronate calcium phosphate bone cements: Setting properties and in vitro response of osteoblast and osteoclast cells. Journal of Inorganic Biochemistry, 2009, 103, 101-106. | 3.5              | 81                  |
| 85 | Effect of Mg2+, Sr2+, and Mn2+ on the chemico-physical and in vitro biological properties of calcium phosphate biomimetic coatings. Journal of Inorganic Biochemistry, 2009, 103, 1666-1674.    | 3.5              | 159                 |
| 86 | Biofunctional alendronate–Hydroxyapatite thin films deposited by Matrix Assisted Pulsed Laser<br>Evaporation. Biomaterials, 2009, 30, 6168-6177.                                                | 11.4             | 68                  |
| 87 | In Vivo and In Vitro Response to a Gelatin/α-Tricalcium Phosphate Bone Cement. Key Engineering<br>Materials, 2008, 361-363, 1001-1004.                                                          | 0.4              | 2                   |
| 88 | The response of bone to nanocrystalline hydroxyapatite-coated Ti13Nb11Zr alloy in an animal model.<br>Biomaterials, 2008, 29, 1730-1736.                                                        | 11.4             | 83                  |
| 89 | Effects of freezing on the biomechanical and structural properties of human posterior tibial tendons. International Orthopaedics, 2008, 32, 145-151.                                            | 1.9              | 108                 |
| 90 | Setting properties and <i>in vitro</i> bioactivity of strontiumâ€enriched gelatin–calcium phosphate<br>bone cements. Journal of Biomedical Materials Research - Part A, 2008, 84A, 965-972.     | 4.0              | 82                  |

| #   | Article                                                                                                                                                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Alendronate–hydroxyapatite nanocomposites and their interaction with osteoclasts and osteoblast-like cells. Biomaterials, 2008, 29, 790-796.                                                                                                                                                                                                         | 11.4 | 139       |
| 92  | Strontium-substituted hydroxyapatite coatings synthesized by pulsed-laser deposition: In vitro osteoblast and osteoclast response. Acta Biomaterialia, 2008, 4, 1885-1893.                                                                                                                                                                           | 8.3  | 313       |
| 93  | Strontium-Substituted Hydroxyapatite Thin Films Grown by Pulsed Laser Deposition. NATO Science for Peace and Security Series B: Physics and Biophysics, 2008, , 389-398.                                                                                                                                                                             | 0.3  | 2         |
| 94  | Densities, Viscosities, Refractive Indices, and Heat Capacities of Poly(propylene glycols) or<br>Poly(ethylene glycol)â`'Poly(propylene glycol)â`'Poly(ethylene glycol)- <i>block-</i> Copolymers +<br>2-Methyltetrahydrofuran at (298.15 and 313.15) K and at Atmospheric Pressure. Journal of Chemical<br>& Engineering Data, 2008, 53, 1302-1308. | 1.9  | 13        |
| 95  | Nanostructured HA crystals up-regulate FGF-2 expression and activity in microvascular endothelium promoting angiogenesis. Bone, 2007, 41, 523-534.                                                                                                                                                                                                   | 2.9  | 58        |
| 96  | Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Poly(ethylene glycols) +<br>2-Methyltetrahydrofuran at (293.15, 303.15, and 313.15) K. Journal of Chemical & Engineering Data,<br>2007, 52, 2020-2025.                                                                                                                      | 1.9  | 49        |
| 97  | Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide +<br>Tetrahydropyran and + 2-Methyltetrahydrofuran at (293.15, 303.15, and 313.15) K. Journal of Chemical<br>& Engineering Data, 2007, 52, 639-644.                                                                                                      | 1.9  | 49        |
| 98  | Composite Nanocrystals Provide New Insight on Alendronate Interaction withÂHydroxyapatite<br>Structure. Advanced Materials, 2007, 19, 2499-2502.                                                                                                                                                                                                     | 21.0 | 95        |
| 99  | In vitro culture of mesenchymal cells onto nanocrystalline hydroxyapatite-coated Ti13Nb13Zr alloy.<br>Journal of Biomedical Materials Research - Part A, 2007, 82A, 213-221.                                                                                                                                                                         | 4.0  | 54        |
| 100 | Excess molar enthalpies and heat capacities of dimethyl sulfoxide+seven normal alkanols at 303.15K and atmospheric pressure. Thermochimica Acta, 2007, 452, 124-127.                                                                                                                                                                                 | 2.7  | 20        |
| 101 | Strontium-substituted hydroxyapatite nanocrystals. Inorganica Chimica Acta, 2007, 360, 1009-1016.                                                                                                                                                                                                                                                    | 2.4  | 308       |
| 102 | Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of<br>Dimethyl Sulfoxide + 1-Propanol at (288.15, 298.15, and 308.15) K and at Normal Pressure. Journal of<br>Chemical & Engineering Data, 2006, 51, 1711-1716.                                                                                       | 1.9  | 34        |
| 103 | Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of<br>Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure. Journal of<br>Chemical & Engineering Data, 2006, 51, 665-670.                                                                                                | 1.9  | 60        |
| 104 | PLLA Based Composites with α-Tricalcium Phosphate and a PLLA-PEO Diblock Copolymer.<br>Macromolecular Symposia, 2006, 234, 26-32.                                                                                                                                                                                                                    | 0.7  | 2         |
| 105 | Nanocomposites of hydroxyapatite with aspartic acid and glutamic acid and their interaction with osteoblast-like cells. Biomaterials, 2006, 27, 4428-4433.                                                                                                                                                                                           | 11.4 | 124       |
| 106 | Structural investigations of lead–strontium fluoroapatites. Journal of Solid State Chemistry, 2006, 179, 3065-3072.                                                                                                                                                                                                                                  | 2.9  | 26        |
| 107 | Thermophysical properties of dimethyl sulfoxide+cyclic and linear ethers at 308.15K. Thermochimica<br>Acta, 2006, 447, 154-160.                                                                                                                                                                                                                      | 2.7  | 25        |
| 108 | Biomimetic synthesis of carbonated hydroxyapatite thin films. Thin Solid Films, 2006, 497, 53-57.                                                                                                                                                                                                                                                    | 1.8  | 20        |

| #   | Article                                                                                                                                                                                                                                 | IF                | CITATIONS    |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|
| 109 | Hydroxyapatite Nanocrystals Modified with Acidic Amino Acids. European Journal of Inorganic<br>Chemistry, 2006, 2006, 4821-4826.                                                                                                        | 2.0               | 44           |
| 110 | The effect of hydroxyapatite nanocrystals on microvascular endothelial cell viability and functions.<br>Journal of Biomedical Materials Research - Part A, 2006, 76A, 656-663.                                                          | 4.0               | 106          |
| 111 | Normal and osteopenic boneâ€derived osteoblast response to a biomimetic gelatin–calcium phosphate<br>bone cement. Journal of Biomedical Materials Research - Part A, 2006, 78A, 739-745.                                                | 4.0               | 37           |
| 112 | Excess molar enthalpies of binary mixtures containing ethylene glycols or poly(ethylene) Tj ETQq0 0 0 rgBT /Ove                                                                                                                         | lock 10 Tf<br>2.7 | 50 622 Td (g |
| 113 | Calcium phosphate thin films synthesized by pulsed laser deposition: Physico-chemical characterization and in vitro cell response. Applied Surface Science, 2005, 248, 344-348.                                                         | 6.1               | 37           |
| 114 | Human osteoblast response to pulsed laser deposited calcium phosphate coatings. Biomaterials, 2005, 26, 2381-2389.                                                                                                                      | 11.4              | 180          |
| 115 | Structural and morphological modifications of hydroxyapatite-polyaspartate composite crystals induced by heat treatment. Crystal Research and Technology, 2005, 40, 1094-1098.                                                          | 1.3               | 17           |
| 116 | Nanocrystalline hydroxyapatite coatings on titanium: a new fast biomimetic method. Biomaterials, 2005, 26, 4085-4089.                                                                                                                   | 11.4              | 192          |
| 117 | A Fast Biomimetic Method for Nanocrystalline Hydroxyapatite Coatings. Key Engineering Materials, 2005, 284-286, 223-226.                                                                                                                | 0.4               | 1            |
| 118 | Enthalpies of Mixing, Densities, and Refractive Indices for Binary Mixtures of (Anisole or Phenetole) +<br>Three Aryl Alcohols at 308.15 K and at Atmospheric Pressure. Journal of Chemical & Engineering<br>Data, 2005, 50, 1404-1408. | 1.9               | 25           |
| 119 | Excess Enthalpies, Heat Capacities, Densities, Viscosities and Refractive Indices of Dimethyl Sulfoxide +<br>Three Aryl Alcohols at 308.15 K and Atmospheric Pressure. Journal of Chemical & Engineering Data,<br>2005, 50, 1932-1937.  | 1.9               | 50           |
| 120 | In vitro mineralization of gelatin-polyacrylic acid complex matrices. Journal of Biomaterials Science,<br>Polymer Edition, 2004, 15, 243-254.                                                                                           | 3.5               | 12           |
| 121 | Electron microscopy studies of octa-calcium phosphate thin films obtained by pulsed laser deposition.<br>Thin Solid Films, 2004, 453-454, 157-161.                                                                                      | 1.8               | 9            |
| 122 | Relationship between triple-helix content and mechanical properties of gelatin films. Biomaterials, 2004, 25, 5675-5680.                                                                                                                | 11.4              | 409          |
| 123 | Hydroxyapatite gels and nanocrystals prepared through a sol–gel process. Journal of Solid State<br>Chemistry, 2004, 177, 3092-3098.                                                                                                     | 2.9               | 104          |
| 124 | Biocompatible Mn2+-doped carbonated hydroxyapatite thin films grown by pulsed laser deposition.<br>Journal of Biomedical Materials Research - Part A, 2004, 71A, 353-358.                                                               | 4.0               | 44           |

| 125 | Biocompatible nanocrystalline octacalcium phosphate thin films obtained by pulsed laser deposition.<br>Biomaterials, 2004, 25, 2539-2545. | 11.4 | 70  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------|------|-----|--|
| 196 | Effect of added gelatin on the properties of calcium phosphate cement. Biomaterials, 2004, 25,                                            | 11.4 | 146 |  |

126 2893-2899.

| #   | Article                                                                                                                                                                                                     | IF                  | CITATIONS               |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------|
| 127 | Morphological and Structural Modifications of Octacalcium Phosphate Induced by Poly-l-Aspartate.<br>Crystal Growth and Design, 2004, 4, 141-146.                                                            | 3.0                 | 37                      |
| 128 | Setting Mechanism of a Biomimetic Bone Cement. Chemistry of Materials, 2004, 16, 3740-3745.                                                                                                                 | 6.7                 | 57                      |
| 129 | Microstructural investigation of hydroxyapatite–polyelectrolyte composites. Journal of Materials<br>Chemistry, 2004, 14, 274-279.                                                                           | 6.7                 | 63                      |
| 130 | Porous phosphate-gelatine composite as bone graft with drug delivery function. Journal of Materials<br>Science: Materials in Medicine, 2003, 14, 623-627.                                                   | 3.6                 | 27                      |
| 131 | Interaction of acidic poly-amino acids with octacalcium phosphate. Journal of Inorganic Biochemistry, 2003, 95, 291-296.                                                                                    | 3.5                 | 42                      |
| 132 | Structural differences between "dark―and "bright―isolated human osteonic lamellae. Journal of<br>Structural Biology, 2003, 141, 22-33.                                                                      | 2.8                 | 81                      |
| 133 | Influence of Gelatin on the Setting Properties of α-Tricalcium Phosphate Cement. Key Engineering<br>Materials, 2003, 254-256, 229-232.                                                                      | 0.4                 | 2                       |
| 134 | MECHANICAL PROPERTIES OF GREAT ARTERIAL WALL AND CLINICAL IMPLICATION. Journal of Mechanics in Medicine and Biology, 2002, 02, 231-244.                                                                     | 0.7                 | 4                       |
| 135 | Morphosynthesis of Octacalcium Phosphate Hollow Microspheres by Polyelectrolyte-Mediated<br>Crystallization This work was supported by MURST, the University of Bologna (Funds for Selected) Tj ETQq1 1 0   | .78 <b>±3</b> 14 rg | gBT2#Overlock           |
| 136 | Morphosynthesis of Octacalcium Phosphate Hollow Microspheres by Polyelectrolyte-Mediated<br>Crystallization This work was supported by MURST, the University of Bologna (Funds for Selected) Tj ETQq0 0 0   | rg₿₿ <b>,</b> ©ve   | rlo <b>¢k</b> 510 Tf 50 |
| 137 | Physicochemical Properties and Structural Refinement of Strontium‣ead Hydroxyapatites. European<br>Journal of Inorganic Chemistry, 2002, 2002, 1864-1870.                                                   | 2.0                 | 23                      |
| 138 | Bonelike apatite growth on hydroxyapatite-gelatin sponges from simulated body fluid. Journal of<br>Biomedical Materials Research Part B, 2002, 59, 709-715.                                                 | 3.1                 | 100                     |
| 139 | α-Tricalcium phosphate hydrolysis to octacalcium phosphate: effect of sodium polyacrylate.<br>Biomaterials, 2002, 23, 1849-1854.                                                                            | 11.4                | 46                      |
| 140 | Stabilization of gelatin films by crosslinking with genipin. Biomaterials, 2002, 23, 4827-4832.                                                                                                             | 11.4                | 520                     |
| 141 | Bone Formation by Distraction Clinical and Structural Studies. Key Engineering Materials, 2001, 192-195, 941-946.                                                                                           | 0.4                 | Ο                       |
| 142 | Morphological and Structural Investigation of Octacalcium Phosphate Hydrolysis in the Presence of<br>Polyacrylic Acids:  Effect of Relative Molecular Weights. Crystal Growth and Design, 2001, 1, 239-244. | 3.0                 | 43                      |
| 143 | Twisted Plywood Pattern of Collagen Fibrils in Teleost Scales: An X-ray Diffraction Investigation.<br>Journal of Structural Biology, 2001, 136, 137-143.                                                    | 2.8                 | 96                      |
| 144 | Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking. Biomaterials, 2001, 22, 763-768.                                                                    | 11.4                | 722                     |

| #   | Article                                                                                                                                                                          | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | X-ray Powder Diffraction and Solid-State NMR Investigations in Cadmiumâ^'Lead Hydroxyapatites.<br>European Journal of Inorganic Chemistry, 2001, 2001, 1261-1267.                | 2.0  | 25        |
| 146 | Chitosan and Gelatin as Engineered Dressing for Wound Repair. Journal of Bioactive and Compatible Polymers, 2001, 16, 145-157.                                                   | 2.1  | 27        |
| 147 | Effect of sodium polyacrylate on the hydrolysis of octacalcium phosphate. Journal of Inorganic<br>Biochemistry, 2000, 78, 227-233.                                               | 3.5  | 34        |
| 148 | Structural and Mechanical Properties of Crosslinked Drawn Gelatin Films. Magyar Apróvad<br>Közlemények, 2000, 61, 451-459.                                                       | 1.4  | 60        |
| 149 | Biomimetic Growth of Hydroxyapatite on Gelatin Films Doped with Sodium Polyacrylate.<br>Biomacromolecules, 2000, 1, 752-756.                                                     | 5.4  | 99        |
| 150 | Synthesis and hydrolysis of octacalcium phosphate: effect of sodium polyacrylate. Journal of<br>Inorganic Biochemistry, 1999, 75, 145-151.                                       | 3.5  | 48        |
| 151 | Hydroxyapatite/polyacrylic acid nanocrystals. Journal of Materials Chemistry, 1999, 9, 779-782.                                                                                  | 6.7  | 83        |
| 152 | X-Ray Diffraction on Cyclically Loaded Osteons. Calcified Tissue International, 1998, 62, 266-273.                                                                               | 3.1  | 24        |
| 153 | Hydroxyapatite-gelatin films: a structural and mechanical characterization. Biomaterials, 1998, 19, 739-744.                                                                     | 11.4 | 101       |
| 154 | Drawn gelatin films with improved mechanical properties. Biomaterials, 1998, 19, 2335-2340.                                                                                      | 11.4 | 109       |
| 155 | Nanocrystals of magnesium and fluoride substituted hydroxyapatite. Journal of Inorganic<br>Biochemistry, 1998, 72, 29-35.                                                        | 3.5  | 170       |
| 156 | Structural Refinements of Strontium Substituted Hydroxylapatites. Materials Science Forum, 1998, 278-281, 814-819.                                                               | 0.3  | 27        |
| 157 | Isomorphous substitutions in β-tricalcium phosphate: The different effects of zinc and strontium.<br>Journal of Inorganic Biochemistry, 1997, 66, 259-265.                       | 3.5  | 122       |
| 158 | Chemical and structural characterization of the mineral phase from cortical and trabecular bone.<br>Journal of Inorganic Biochemistry, 1997, 68, 45-51.                          | 3.5  | 245       |
| 159 | In vitro calcified tendon collagen: an atomic force and scanning electron microscopy investigation.<br>Biomaterials, 1997, 18, 657-665.                                          | 11.4 | 30        |
| 160 | Relationship between Solid State NMR Parameters and X-ray Structural Data in Tricadmium<br>Phosphates. Inorganic Chemistry, 1996, 35, 149-154.                                   | 4.0  | 16        |
| 161 | Rietveld structure refinement of synthetic magnesium substituted <i>î²</i> -tricalcium phosphate.<br>Zeitschrift Fur Kristallographie - Crystalline Materials, 1996, 211, 13-16. | 0.8  | 27        |
| 162 | Rietveld structure refinements of calcium hydroxylapatite containing magnesium. Acta<br>Crystallographica Section B: Structural Science, 1996, 52, 87-92.                        | 1.8  | 99        |

| #   | Article                                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | X-ray diffraction study of in vitro calcification of tendon collagen. Biomaterials, 1996, 17, 1195-1201.                                                                                                                                                                          | 11.4 | 20        |
| 164 | Ultrastructural and Biochemical Modifications of Collagen from Tissue of Morbus Dupuytren<br>Patients1. Journal of Biochemistry, 1995, 118, 405-410.                                                                                                                              | 1.7  | 11        |
| 165 | Inhibiting effect of zinc on hydroxylapatite crystallization. Journal of Inorganic Biochemistry, 1995, 58, 49-58.                                                                                                                                                                 | 3.5  | 167       |
| 166 | Magnesium influence on hydroxyapatite crystallization. Journal of Inorganic Biochemistry, 1993, 49,<br>69-78.                                                                                                                                                                     | 3.5  | 263       |
| 167 | The role of magnesium on the structure of biological apatites. Calcified Tissue International, 1992, 50, 439-444.                                                                                                                                                                 | 3.1  | 222       |
| 168 | Age related changes in the thermal transition of Turkey leg flexor tendon collagen. Journal of<br>Thermal Analysis, 1992, 38, 505-514.                                                                                                                                            | 0.6  | 3         |
| 169 | Structural and chemical characterization of a cutaneous calcification. Journal of Thermal Analysis, 1992, 38, 2719-2728.                                                                                                                                                          | 0.6  | 2         |
| 170 | Collagen structural organization in uncalcified and calcified human anterior longitudinal ligament.<br>Connective Tissue Research, 1991, 25, 171-179.                                                                                                                             | 2.3  | 27        |
| 171 | Structural analysis of turkey tendon collagen upon removal of the inorganic phase. International<br>Journal of Biological Macromolecules, 1991, 13, 110-114.                                                                                                                      | 7.5  | 59        |
| 172 | Structural modifications of hydroxyapatite induced by lead substitution for calcium. Journal of the Chemical Society Dalton Transactions, 1991, , 2883.                                                                                                                           | 1.1  | 60        |
| 173 | X-ray diffraction and continuous small-angle scattering of turkey tendons with the improved area<br>detector at Frascati. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators,<br>Spectrometers, Detectors and Associated Equipment, 1991, 308, 285-290. | 1.6  | 4         |
| 174 | Effect of fluoride, chloride and carbonate ions introduced by cyclic pH fluctuation on the physico-chemical properties of apatite-based ceramics. Journal of Materials Science, 1990, 25, 3203-3207.                                                                              | 3.7  | 17        |
| 175 | Thermal conversion of octacalcium phosphate into hydroxyapatite. Journal of Inorganic<br>Biochemistry, 1990, 40, 293-299.                                                                                                                                                         | 3.5  | 33        |
| 176 | Structure refinements of lead-substituted calcium hydroxyapatite by X-ray powder fitting. Acta<br>Crystallographica Section B: Structural Science, 1989, 45, 247-251.                                                                                                             | 1.8  | 58        |
| 177 | Structural and chemical characterization of gallstones resistant to dissolution therapy. Journal of<br>Inorganic Biochemistry, 1988, 32, 109-116.                                                                                                                                 | 3.5  | 5         |
| 178 | Effect of foreign ions on the conversion of brushite and octacalcium phosphate into hydroxyapatite.<br>Journal of Inorganic Biochemistry, 1988, 32, 251-257.                                                                                                                      | 3.5  | 28        |
| 179 | Structural and chemical characterization of inorganic deposits in calcified human mitral valve.<br>Journal of Inorganic Biochemistry, 1988, 34, 75-82.                                                                                                                            | 3.5  | 44        |
| 180 | Calcified turkey leg tendon as structural model for bone mineralization. International Journal of<br>Biological Macromolecules, 1988, 10, 282-286.                                                                                                                                | 7.5  | 54        |

| #   | Article                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Differential scanning calorimetry and X-ray diffraction study of tendon collagen thermal denaturation. International Journal of Biological Macromolecules, 1987, 9, 363-367.                                   | 7.5  | 64        |
| 182 | Structural modifications of air-dried tendon collagen on heating. International Journal of Biological<br>Macromolecules, 1987, 9, 176-180.                                                                     | 7.5  | 25        |
| 183 | Thermal stability of cadmium–calcium hydroxyapatite solid solutions. Journal of the Chemical Society<br>Dalton Transactions, 1986, , 241-244.                                                                  | 1.1  | 33        |
| 184 | Collagen-apatite structural relationship in human tendons affected by pathological calcification in<br>idiopathic skeletal hyperostosis. International Journal of Biological Macromolecules, 1986, 8, 212-216. | 7.5  | 3         |
| 185 | Fluoride and carbonate incorporation into hydroxyapatite under condition of cyclic pH variation.<br>Journal of Inorganic Biochemistry, 1986, 27, 31-39.                                                        | 3.5  | 18        |
| 186 | Differences in the Fibril Structure of Corneal and Tendon Collagen. An Electron Microscopy and<br>X-Ray Diffraction Investigation. Connective Tissue Research, 1986, 15, 269-281.                              | 2.3  | 57        |
| 187 | A low-angle X-ray diffraction analysis of osteonic inorganic phase using synchrotron radiation.<br>Calcified Tissue International, 1985, 37, 659-664.                                                          | 3.1  | 46        |
| 188 | Structural organization of collagen in Metridium senile. International Journal of Biological<br>Macromolecules, 1985, 7, 19-24.                                                                                | 7.5  | 4         |
| 189 | Thermal behavior of bone and synthetic hydroxyapatites submitted to magnesium interaction in aqueous medium. Journal of Inorganic Biochemistry, 1984, 20, 1-12.                                                | 3.5  | 46        |
| 190 | Barium calcium hydroxyapatite solid solutions. Journal of the Chemical Society Dalton Transactions, 1984, , 1091.                                                                                              | 1.1  | 24        |
| 191 | X-ray diffraction analysis of transversal osteonic lamellae. Calcified Tissue International, 1983, 35, 279-283.                                                                                                | 3.1  | 23        |
| 192 | Light microscopy, electron microscopy, and X-ray diffraction analysis of glycerinated collagen fibers.<br>Journal of Ultrastructure Research, 1983, 85, 228-237.                                               | 1.1  | 22        |
| 193 | Characterization of synthetic apatites for bioceramic implants. Biomaterials, 1980, 1, 140-144.                                                                                                                | 11.4 | 9         |
| 194 | X-ray diffraction study of bovine lens capsule collagen. Biochimica Et Biophysica Acta (BBA) - Protein<br>Structure, 1979, 576, 404-408.                                                                       | 1.7  | 15        |
| 195 | X-Ray Diffraction and Scanning Electron Microscopy of Bovine Media Aortic Wall. Connective Tissue<br>Research, 1977, 5, 37-39.                                                                                 | 2.3  | 11        |