
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8458798/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking. Biomaterials, 2001, 22, 763-768.	11.4	722
2	lonic substitutions in calcium phosphates synthesized at low temperature. Acta Biomaterialia, 2010, 6, 1882-1894.	8.3	705
3	Stabilization of gelatin films by crosslinking with genipin. Biomaterials, 2002, 23, 4827-4832.	11.4	520
4	Relationship between triple-helix content and mechanical properties of gelatin films. Biomaterials, 2004, 25, 5675-5680.	11.4	409
5	Strontium-substituted hydroxyapatite coatings synthesized by pulsed-laser deposition: In vitro osteoblast and osteoclast response. Acta Biomaterialia, 2008, 4, 1885-1893.	8.3	313
6	Strontium-substituted hydroxyapatite nanocrystals. Inorganica Chimica Acta, 2007, 360, 1009-1016.	2.4	308
7	Magnesium influence on hydroxyapatite crystallization. Journal of Inorganic Biochemistry, 1993, 49, 69-78.	3.5	263
8	Chemical and structural characterization of the mineral phase from cortical and trabecular bone. Journal of Inorganic Biochemistry, 1997, 68, 45-51.	3.5	245
9	The role of magnesium on the structure of biological apatites. Calcified Tissue International, 1992, 50, 439-444.	3.1	222
10	Electrospun gelatin nanofibers: Optimization of genipin cross-linking to preserve fiber morphology after exposure to water. Acta Biomaterialia, 2011, 7, 1702-1709.	8.3	217
11	Nanocrystalline hydroxyapatite coatings on titanium: a new fast biomimetic method. Biomaterials, 2005, 26, 4085-4089.	11.4	192
12	Human osteoblast response to pulsed laser deposited calcium phosphate coatings. Biomaterials, 2005, 26, 2381-2389.	11.4	180
13	Interaction of Srâ€doped hydroxyapatite nanocrystals with osteoclast and osteoblastâ€like cells. Journal of Biomedical Materials Research - Part A, 2009, 89A, 594-600.	4.0	179
14	Nanocrystals of magnesium and fluoride substituted hydroxyapatite. Journal of Inorganic Biochemistry, 1998, 72, 29-35.	3.5	170
15	Inhibiting effect of zinc on hydroxylapatite crystallization. Journal of Inorganic Biochemistry, 1995, 58, 49-58.	3.5	167
16	Effect of Mg2+, Sr2+, and Mn2+ on the chemico-physical and in vitro biological properties of calcium phosphate biomimetic coatings. Journal of Inorganic Biochemistry, 2009, 103, 1666-1674.	3.5	159
17	Effect of added gelatin on the properties of calcium phosphate cement. Biomaterials, 2004, 25, 2893-2899.	11.4	146
18	Alendronate–hydroxyapatite nanocomposites and their interaction with osteoclasts and osteoblast-like cells. Biomaterials, 2008, 29, 790-796.	11.4	139

#	Article	IF	CITATIONS
19	Chemico-physical characterization of gelatin films modified with oxidized alginate. Acta Biomaterialia, 2010, 6, 383-388.	8.3	136

- Morphosynthesis of Octacalcium Phosphate Hollow Microspheres by Polyelectrolyte-Mediated Crystallization This work was supported by MURST, the University of Bologna (Funds for Selected) Tj ETQq0 0 0 rgBB,&Overlo¢k510 Tf 50 20

21	Nanocomposites of hydroxyapatite with aspartic acid and glutamic acid and their interaction with osteoblast-like cells. Biomaterials, 2006, 27, 4428-4433.	11.4	124
22	lsomorphous substitutions in β-tricalcium phosphate: The different effects of zinc and strontium. Journal of Inorganic Biochemistry, 1997, 66, 259-265.	3.5	122
23	Drawn gelatin films with improved mechanical properties. Biomaterials, 1998, 19, 2335-2340.	11.4	109
24	Effects of freezing on the biomechanical and structural properties of human posterior tibial tendons. International Orthopaedics, 2008, 32, 145-151.	1.9	108
25	The effect of hydroxyapatite nanocrystals on microvascular endothelial cell viability and functions. Journal of Biomedical Materials Research - Part A, 2006, 76A, 656-663.	4.0	106
26	Hydroxyapatite gels and nanocrystals prepared through a sol–gel process. Journal of Solid State Chemistry, 2004, 177, 3092-3098.	2.9	104
27	Hydroxyapatite-gelatin films: a structural and mechanical characterization. Biomaterials, 1998, 19, 739-744.	11.4	101
28	Bonelike apatite growth on hydroxyapatite-gelatin sponges from simulated body fluid. Journal of Biomedical Materials Research Part B, 2002, 59, 709-715.	3.1	100
29	Rietveld structure refinements of calcium hydroxylapatite containing magnesium. Acta Crystallographica Section B: Structural Science, 1996, 52, 87-92.	1.8	99
29 30	Rietveld structure refinements of calcium hydroxylapatite containing magnesium. Acta Crystallographica Section B: Structural Science, 1996, 52, 87-92. Biomimetic Growth of Hydroxyapatite on Gelatin Films Doped with Sodium Polyacrylate. Biomacromolecules, 2000, 1, 752-756.	1.8 5.4	99 99
	Crystallographica Section B: Structural Science, 1996, 52, 87-92. Biomimetic Growth of Hydroxyapatite on Gelatin Films Doped with Sodium Polyacrylate.		
30	Crystallographica Section B: Structural Science, 1996, 52, 87-92. Biomimetic Growth of Hydroxyapatite on Gelatin Films Doped with Sodium Polyacrylate. Biomacromolecules, 2000, 1, 752-756. Twisted Plywood Pattern of Collagen Fibrils in Teleost Scales: An X-ray Diffraction Investigation.	5.4	99
30 31	Crystallographica Section B: Structural Science, 1996, 52, 87-92. Biomimetic Growth of Hydroxyapatite on Gelatin Films Doped with Sodium Polyacrylate. Biomacromolecules, 2000, 1, 752-756. Twisted Plywood Pattern of Collagen Fibrils in Teleost Scales: An X-ray Diffraction Investigation. Journal of Structural Biology, 2001, 136, 137-143. Composite Nanocrystals Provide New Insight on Alendronate Interaction withÂHydroxyapatite	5.4 2.8	99 96
30 31 32	Crystallographica Section B: Structural Science, 1996, 52, 87-92. Biomimetic Growth of Hydroxyapatite on Gelatin Films Doped with Sodium Polyacrylate. Biomacromolecules, 2000, 1, 752-756. Twisted Plywood Pattern of Collagen Fibrils in Teleost Scales: An X-ray Diffraction Investigation. Journal of Structural Biology, 2001, 136, 137-143. Composite Nanocrystals Provide New Insight on Alendronate Interaction withÂHydroxyapatite Structure. Advanced Materials, 2007, 19, 2499-2502.	5.4 2.8 21.0	99 96 95
30 31 32 33	Crystallographica Section B: Structural Science, 1996, 52, 87-92. Biomimetic Growth of Hydroxyapatite on Gelatin Films Doped with Sodium Polyacrylate. Biomacromolecules, 2000, 1, 752-756. Twisted Plywood Pattern of Collagen Fibrils in Teleost Scales: An X-ray Diffraction Investigation. Journal of Structural Biology, 2001, 136, 137-143. Composite Nanocrystals Provide New Insight on Alendronate Interaction withÂHydroxyapatite Structure. Advanced Materials, 2007, 19, 2499-2502. Hydroxyapatite/polyacrylic acid nanocrystals. Journal of Materials Chemistry, 1999, 9, 779-782. The response of bone to nanocrystalline hydroxyapatite-coated Ti13Nb11Zr alloy in an animal model.	5.4 2.8 21.0 6.7	99 96 95 83

#	Article	IF	CITATIONS
37	Structural differences between "dark―and "bright―isolated human osteonic lamellae. Journal of Structural Biology, 2003, 141, 22-33.	2.8	81
38	Alendronate and Pamidronate calcium phosphate bone cements: Setting properties and in vitro response of osteoblast and osteoclast cells. Journal of Inorganic Biochemistry, 2009, 103, 101-106.	3.5	81
39	Structural reinforcement and failure analysis in composite nanofibers of graphene oxide and gelatin. Carbon, 2014, 78, 566-577.	10.3	81
40	Porous composite scaffolds based on gelatin and partially hydrolyzed α-tricalcium phosphate. Acta Biomaterialia, 2009, 5, 636-643.	8.3	73
41	Magnesium and strontium doped octacalcium phosphate thin films by matrix assisted pulsed laser evaporation. Journal of Inorganic Biochemistry, 2012, 107, 65-72.	3.5	73
42	Co-electrospun gelatin-poly(l-lactic acid) scaffolds: Modulation of mechanical properties and chondrocyte response as a function of composition. Materials Science and Engineering C, 2014, 36, 130-138.	7.3	71
43	Biocompatible nanocrystalline octacalcium phosphate thin films obtained by pulsed laser deposition. Biomaterials, 2004, 25, 2539-2545.	11.4	70
44	Antioxidant and bone repair properties of quercetin-functionalized hydroxyapatite: An in vitro osteoblast–osteoclast–endothelial cell co-culture study. Acta Biomaterialia, 2016, 32, 298-308.	8.3	70
45	Biofunctional alendronate–Hydroxyapatite thin films deposited by Matrix Assisted Pulsed Laser Evaporation. Biomaterials, 2009, 30, 6168-6177.	11.4	68
46	Differential scanning calorimetry and X-ray diffraction study of tendon collagen thermal denaturation. International Journal of Biological Macromolecules, 1987, 9, 363-367.	7.5	64
47	Microstructural investigation of hydroxyapatite–polyelectrolyte composites. Journal of Materials Chemistry, 2004, 14, 274-279.	6.7	63
48	Comparative performance of collagen nanofibers electrospun from different solvents and stabilized by different crosslinkers. Journal of Materials Science: Materials in Medicine, 2014, 25, 2313-2321.	3.6	63
49	Structural modifications of hydroxyapatite induced by lead substitution for calcium. Journal of the Chemical Society Dalton Transactions, 1991, , 2883.	1.1	60
50	Structural and Mechanical Properties of Crosslinked Drawn Gelatin Films. Magyar Apróvad Közlemények, 2000, 61, 451-459.	1.4	60
51	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Esters of Carbonic Acid at 308.15 K and Atmospheric Pressure. Journal of Chemical & Engineering Data, 2006, 51, 665-670.	1.9	60
52	Structural analysis of turkey tendon collagen upon removal of the inorganic phase. International Journal of Biological Macromolecules, 1991, 13, 110-114.	7.5	59
53	Structure refinements of lead-substituted calcium hydroxyapatite by X-ray powder fitting. Acta Crystallographica Section B: Structural Science, 1989, 45, 247-251.	1.8	58
54	Nanostructured HA crystals up-regulate FGF-2 expression and activity in microvascular endothelium promoting angiogenesis. Bone, 2007, 41, 523-534.	2.9	58

#	Article	IF	CITATIONS
55	Collapsed Octacalcium Phosphate Stabilized by Ionic Substitutions. Crystal Growth and Design, 2010, 10, 3612-3617.	3.0	58
56	Combined effect of strontium and zoledronate on hydroxyapatite structure and bone cell responses. Biomaterials, 2014, 35, 5619-5626.	11.4	58
57	Differences in the Fibril Structure of Corneal and Tendon Collagen. An Electron Microscopy and X-Ray Diffraction Investigation. Connective Tissue Research, 1986, 15, 269-281.	2.3	57
58	Setting Mechanism of a Biomimetic Bone Cement. Chemistry of Materials, 2004, 16, 3740-3745.	6.7	57
59	Functionalization of biomimetic calcium phosphate bone cements with alendronate. Journal of Inorganic Biochemistry, 2010, 104, 1099-1106.	3.5	56
60	The effect of zoledronate-hydroxyapatite nanocomposites on osteoclasts and osteoblast-like cells inÂvitro. Biomaterials, 2012, 33, 722-730.	11.4	56
61	Calcium Phosphates as Delivery Systems for Bisphosphonates. Journal of Functional Biomaterials, 2018, 9, 6.	4.4	56
62	Calcified turkey leg tendon as structural model for bone mineralization. International Journal of Biological Macromolecules, 1988, 10, 282-286.	7.5	54
63	In vitro culture of mesenchymal cells onto nanocrystalline hydroxyapatite-coated Ti13Nb13Zr alloy. Journal of Biomedical Materials Research - Part A, 2007, 82A, 213-221.	4.0	54
64	Role of pH on stability and mechanical properties of gelatin films. Journal of Bioactive and Compatible Polymers, 2012, 27, 67-77.	2.1	54
65	Effect of sterilization and crosslinking on gelatin films. Journal of Materials Science: Materials in Medicine, 2015, 26, 69.	3.6	51
66	Strontium and zoledronate hydroxyapatites graded composite coatings for bone prostheses. Journal of Colloid and Interface Science, 2015, 448, 1-7.	9.4	51
67	Excess Enthalpies, Heat Capacities, Densities, Viscosities and Refractive Indices of Dimethyl Sulfoxide + Three Aryl Alcohols at 308.15 K and Atmospheric Pressure. Journal of Chemical & Engineering Data, 2005, 50, 1932-1937.	1.9	50
68	Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Poly(ethylene glycols) + 2-Methyltetrahydrofuran at (293.15, 303.15, and 313.15) K. Journal of Chemical & Engineering Data, 2007, 52, 2020-2025.	1.9	49
69	Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + Tetrahydropyran and + 2-Methyltetrahydrofuran at (293.15, 303.15, and 313.15) K. Journal of Chemical & Engineering Data, 2007, 52, 639-644.	1.9	49
70	Synthesis and hydrolysis of octacalcium phosphate: effect of sodium polyacrylate. Journal of Inorganic Biochemistry, 1999, 75, 145-151.	3.5	48
71	Thermal behavior of bone and synthetic hydroxyapatites submitted to magnesium interaction in aqueous medium. Journal of Inorganic Biochemistry, 1984, 20, 1-12.	3.5	46
72	A low-angle X-ray diffraction analysis of osteonic inorganic phase using synchrotron radiation. Calcified Tissue International, 1985, 37, 659-664.	3.1	46

#	Article	IF	CITATIONS
73	α-Tricalcium phosphate hydrolysis to octacalcium phosphate: effect of sodium polyacrylate. Biomaterials, 2002, 23, 1849-1854.	11.4	46
74	Strontium and Zinc Substitution in β-Tricalcium Phosphate: An X-ray Diffraction, Solid State NMR and ATR-FTIR Study. Journal of Functional Biomaterials, 2019, 10, 20.	4.4	45
75	Structural and chemical characterization of inorganic deposits in calcified human mitral valve. Journal of Inorganic Biochemistry, 1988, 34, 75-82.	3.5	44
76	Biocompatible Mn2+-doped carbonated hydroxyapatite thin films grown by pulsed laser deposition. Journal of Biomedical Materials Research - Part A, 2004, 71A, 353-358.	4.0	44
77	Hydroxyapatite Nanocrystals Modified with Acidic Amino Acids. European Journal of Inorganic Chemistry, 2006, 2006, 4821-4826.	2.0	44
78	3D interconnected porous biomimetic scaffolds: <i>In vitro</i> cell response. Journal of Biomedical Materials Research - Part A, 2013, 101, 3560-3570.	4.0	44
79	Morphological and Structural Investigation of Octacalcium Phosphate Hydrolysis in the Presence of Polyacrylic Acids:  Effect of Relative Molecular Weights. Crystal Growth and Design, 2001, 1, 239-244.	3.0	43
80	Atmospheric Pressure Non-Equilibrium Plasma as a Green Tool to Crosslink Gelatin Nanofibers. Scientific Reports, 2016, 6, 38542.	3.3	43
81	Interaction of acidic poly-amino acids with octacalcium phosphate. Journal of Inorganic Biochemistry, 2003, 95, 291-296.	3.5	42
82	Morphological and Structural Modifications of Octacalcium Phosphate Induced by Poly-l-Aspartate. Crystal Growth and Design, 2004, 4, 141-146.	3.0	37
83	Calcium phosphate thin films synthesized by pulsed laser deposition: Physico-chemical characterization and in vitro cell response. Applied Surface Science, 2005, 248, 344-348.	6.1	37
84	Normal and osteopenic boneâ€derived osteoblast response to a biomimetic gelatin–calcium phosphate bone cement. Journal of Biomedical Materials Research - Part A, 2006, 78A, 739-745.	4.0	37
85	Functional properties of chitosan films modified by snail mucus extract. International Journal of Biological Macromolecules, 2020, 143, 126-135.	7.5	37
86	Multiâ€Layered Scaffolds for Osteochondral Tissue Engineering: In Vitro Response of Co ultured Human Mesenchymal Stem Cells. Macromolecular Bioscience, 2015, 15, 1535-1545.	4.1	36
87	Strontium‣ubstituted Hydroxyapatiteâ€Gelatin Biomimetic Scaffolds Modulate Bone Cell Response. Macromolecular Bioscience, 2018, 18, e1800096.	4.1	36
88	Functionalized Biomimetic Calcium Phosphates for Bone Tissue Repair. Journal of Applied Biomaterials and Functional Materials, 2017, 15, e313-e325.	1.6	35
89	Synthesis and Hydrolysis of Brushite (DCPD): The Role of Ionic Substitution. Crystal Growth and Design, 2021, 21, 1689-1697.	3.0	35
90	Effect of sodium polyacrylate on the hydrolysis of octacalcium phosphate. Journal of Inorganic Biochemistry, 2000, 78, 227-233.	3.5	34

#	Article	IF	CITATIONS
91	Excess Molar Enthalpies, Molar Heat Capacities, Densities, Viscosities, and Refractive Indices of Dimethyl Sulfoxide + 1-Propanol at (288.15, 298.15, and 308.15) K and at Normal Pressure. Journal of Chemical & Engineering Data, 2006, 51, 1711-1716.	1.9	34
92	Thermal stability of cadmium–calcium hydroxyapatite solid solutions. Journal of the Chemical Society Dalton Transactions, 1986, , 241-244.	1.1	33
93	Thermal conversion of octacalcium phosphate into hydroxyapatite. Journal of Inorganic Biochemistry, 1990, 40, 293-299.	3.5	33
94	Antiresorption implant coatings based on calcium alendronate and octacalcium phosphate deposited by matrix assisted pulsed laser evaporation. Colloids and Surfaces B: Biointerfaces, 2015, 136, 449-456.	5.0	33
95	Antiresorptive and anti-angiogenetic octacalcium phosphate functionalized with bisphosphonates: An in vitro tri-culture study. Acta Biomaterialia, 2017, 54, 419-428.	8.3	33
96	Gradient coatings of strontium hydroxyapatite/zinc β-tricalcium phosphate as a tool to modulate osteoblast/osteoclast response. Journal of Inorganic Biochemistry, 2018, 183, 1-8.	3.5	32
97	Effect of strontium and gelatin on the reactivity of α-tricalcium phosphate. Acta Biomaterialia, 2010, 6, 936-942.	8.3	31
98	Non-equilibrium atmospheric pressure plasma as innovative method to crosslink and enhance mucoadhesion of econazole-loaded gelatin films for buccal drug delivery. Colloids and Surfaces B: Biointerfaces, 2018, 163, 73-82.	5.0	31
99	In vitro calcified tendon collagen: an atomic force and scanning electron microscopy investigation. Biomaterials, 1997, 18, 657-665.	11.4	30
100	Biomimetic gelatin–octacalcium phosphate core–shell microspheres. Journal of Colloid and Interface Science, 2011, 362, 594-599.	9.4	29
101	Effect of foreign ions on the conversion of brushite and octacalcium phosphate into hydroxyapatite. Journal of Inorganic Biochemistry, 1988, 32, 251-257.	3.5	28
102	Highly Porous Gelatin Reinforced 3D Scaffolds for Articular Cartilage Regeneration. Macromolecular Bioscience, 2015, 15, 941-952.	4.1	28
103	Modulation of Alendronate release from a calcium phosphate bone cement: An in vitro osteoblast-osteoclast co-culture study. International Journal of Pharmaceutics, 2019, 554, 245-255.	5.2	28
104	Quercetin loaded gelatin films with modulated release and tailored anti-oxidant, mechanical and swelling properties. Food Hydrocolloids, 2020, 109, 106089.	10.7	28
105	Collagen structural organization in uncalcified and calcified human anterior longitudinal ligament. Connective Tissue Research, 1991, 25, 171-179.	2.3	27
106	Rietveld structure refinement of synthetic magnesium substituted <i>β</i> -tricalcium phosphate. Zeitschrift Fur Kristallographie - Crystalline Materials, 1996, 211, 13-16.	0.8	27
107	Structural Refinements of Strontium Substituted Hydroxylapatites. Materials Science Forum, 1998, 278-281, 814-819.	0.3	27
108	Chitosan and Gelatin as Engineered Dressing for Wound Repair. Journal of Bioactive and Compatible Polymers, 2001, 16, 145-157.	2.1	27

#	Article	IF	CITATIONS
109	Porous phosphate-gelatine composite as bone graft with drug delivery function. Journal of Materials Science: Materials in Medicine, 2003, 14, 623-627.	3.6	27
110	Crystalline Calcium Alendronate Obtained by Octacalcium Phosphate Digestion: A New Chance for Local Treatment of Bone Loss Diseases?. Advanced Materials, 2013, 25, 4605-4611.	21.0	27
111	Structural investigations of lead–strontium fluoroapatites. Journal of Solid State Chemistry, 2006, 179, 3065-3072.	2.9	26
112	The effect of alendronate doped calcium phosphates on bone cells activity. Bone, 2012, 51, 944-952.	2.9	26
113	Structural modifications of air-dried tendon collagen on heating. International Journal of Biological Macromolecules, 1987, 9, 176-180.	7.5	25
114	X-ray Powder Diffraction and Solid-State NMR Investigations in Cadmiumâ^'Lead Hydroxyapatites. European Journal of Inorganic Chemistry, 2001, 2001, 1261-1267.	2.0	25
115	Enthalpies of Mixing, Densities, and Refractive Indices for Binary Mixtures of (Anisole or Phenetole) + Three Aryl Alcohols at 308.15 K and at Atmospheric Pressure. Journal of Chemical & Engineering Data, 2005, 50, 1404-1408.	1.9	25
116	Thermophysical properties of dimethyl sulfoxide+cyclic and linear ethers at 308.15K. Thermochimica Acta, 2006, 447, 154-160.	2.7	25
117	Synthesis and characterization of Sr(10â^'x)Cdx(PO4)6Y2 (Y=OH and F): A comparison of apatites containing two divalent cations. Materials Research Bulletin, 2009, 44, 522-530.	5.2	25
118	Barium calcium hydroxyapatite solid solutions. Journal of the Chemical Society Dalton Transactions, 1984, , 1091.	1.1	24
119	X-Ray Diffraction on Cyclically Loaded Osteons. Calcified Tissue International, 1998, 62, 266-273.	3.1	24
120	<scp>C</scp> ontinuous multilayered composite hydrogel as osteochondral substitute. Journal of Biomedical Materials Research - Part A, 2015, 103, 2521-2530.	4.0	24
121	Monocyclic β-lactams loaded on hydroxyapatite: new biomaterials with enhanced antibacterial activity against resistant strains. Scientific Reports, 2017, 7, 2712.	3.3	24
122	Quercetin and alendronate multiâ€functionalized materials as tools to hinder oxidative stress damage. Journal of Biomedical Materials Research - Part A, 2017, 105, 3293-3303.	4.0	24
123	X-ray diffraction analysis of transversal osteonic lamellae. Calcified Tissue International, 1983, 35, 279-283.	3.1	23
124	Morphosynthesis of Octacalcium Phosphate Hollow Microspheres by Polyelectrolyte-Mediated Crystallization This work was supported by MURST, the University of Bologna (Funds for Selected) Tj ETQq0 0 0 i	rg B TdOver	10 213 10 Tf 50
125	Physicochemical Properties and Structural Refinement of Strontium‣ead Hydroxyapatites. European Journal of Inorganic Chemistry, 2002, 2002, 1864-1870.	2.0	23

126Chondrogenic differentiation of human adipose mesenchimal stem cells: Influence of a biomimetic
gelatin genipin crosslinked porous scaffold. Microscopy Research and Technique, 2014, 77, 928-934.2.223

#	Article	IF	CITATIONS
127	Light microscopy, electron microscopy, and X-ray diffraction analysis of glycerinated collagen fibers. Journal of Ultrastructure Research, 1983, 85, 228-237.	1.1	22
128	Effect of strontium substituted ßâ€TCP associated to mesenchymal stem cells from bone marrow and adipose tissue on spinal fusion in healthy and ovariectomized rat. Journal of Cellular Physiology, 2019, 234, 20046-20056.	4.1	22
129	Advanced Biomimetic Implants Based on Nanostructured Coatings Synthesized by Pulsed Laser Technologies. Springer Series in Materials Science, 2010, , 235-260.	0.6	22
130	Hydroxyapatite functionalization to trigger adsorption and release of risedronate. Colloids and Surfaces B: Biointerfaces, 2017, 160, 493-499.	5.0	21
131	X-ray diffraction study of in vitro calcification of tendon collagen. Biomaterials, 1996, 17, 1195-1201.	11.4	20
132	Biomimetic synthesis of carbonated hydroxyapatite thin films. Thin Solid Films, 2006, 497, 53-57.	1.8	20
133	Excess molar enthalpies and heat capacities of dimethyl sulfoxide+seven normal alkanols at 303.15K and atmospheric pressure. Thermochimica Acta, 2007, 452, 124-127.	2.7	20
134	Densities, Viscosities, Refractive Indices, and Heat Capacities of Poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf Pressure. Journal of Chemical & Engineering Data, 2010, 55, 205-210.	50 467 Td 1.9	(glycol- <i>r 20</i>
135	Role of Aspartic and Polyaspartic Acid on the Synthesis and Hydrolysis of Brushite Journal of Functional Biomaterials, 2019, 10, 11.	4.4	20
136	Cationic-anionic polyelectrolyte interaction as a tool to graft silver nanoparticles on hydroxyapatite crystals and prevent cytotoxicity. RSC Advances, 2014, 4, 645-652.	3.6	19
137	Biomimetic fabrication of antibacterial calcium phosphates mediated by polydopamine. Journal of Inorganic Biochemistry, 2018, 178, 43-53.	3.5	19
138	Fluoride and carbonate incorporation into hydroxyapatite under condition of cyclic pH variation. Journal of Inorganic Biochemistry, 1986, 27, 31-39.	3.5	18
139	Antiresorptive properties of strontium substituted and alendronate functionalized hydroxyapatite nanocrystals in an ovariectomized rat spinal arthrodesis model. Materials Science and Engineering C, 2019, 95, 355-362.	7.3	18
140	Effect of fluoride, chloride and carbonate ions introduced by cyclic pH fluctuation on the physico-chemical properties of apatite-based ceramics. Journal of Materials Science, 1990, 25, 3203-3207.	3.7	17
141	Structural and morphological modifications of hydroxyapatite-polyaspartate composite crystals induced by heat treatment. Crystal Research and Technology, 2005, 40, 1094-1098.	1.3	17
142	Time Course of Zoledronate Interaction with Hydroxyapatite Nanocrystals. Journal of Physical Chemistry C, 2012, 116, 15812-15818.	3.1	17
143	Alendronate Functionalized Mesoporous Bioactive Glass Nanospheres. Materials, 2016, 9, 135.	2.9	17
144	Spray-congealed solid lipid microparticles as a new tool for the controlled release of bisphosphonates from a calcium phosphate bone cement. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 122, 6-16.	4.3	17

#	Article	IF	CITATIONS
145	Relationship between Solid State NMR Parameters and X-ray Structural Data in Tricadmium Phosphates. Inorganic Chemistry, 1996, 35, 149-154.	4.0	16

146 Excess molar enthalpies of binary mixtures containing ethylene glycols or poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 702 Td (g

147	(<i>9R</i>)-9-Hydroxystearate-Functionalized Hydroxyapatite as Antiproliferative and Cytotoxic Agent toward Osteosarcoma Cells Langmuir, 2016, 32, 188-194.	3.5	16
148	A new multifunctionalized material against multi-drug resistant bacteria and abnormal osteoclast activity. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 127, 120-129.	4.3	16
149	Green synthesis of bioactive oligopeptides promoted by recyclable nanocrystalline hydroxyapatite. Future Medicinal Chemistry, 2020, 12, 479-491.	2.3	16
150	X-ray diffraction study of bovine lens capsule collagen. Biochimica Et Biophysica Acta (BBA) - Protein Structure, 1979, 576, 404-408.	1.7	15
151	Montmorillonite reinforced type A gelatin nanocomposites. Journal of Applied Polymer Science, 2014, 131, .	2.6	15
152	Optimization of a biomimetic bone cement: Role of DCPD. Journal of Inorganic Biochemistry, 2011, 105, 1060-1065.	3.5	14
153	Multifunctionalization Modulates Hydroxyapatite Surface Interaction with Bisphosphonate: Antiosteoporotic and Antioxidative Stress Materials. ACS Biomaterials Science and Engineering, 2019, 5, 3429-3439.	5.2	14
154	Densities, Viscosities, Refractive Indices, and Heat Capacities of Poly(propylene glycols) or Poly(ethylene glycol)â`'Poly(propylene glycol)â`'Poly(ethylene glycol)- <i>block-</i> Copolymers + 2-Methyltetrahydrofuran at (298.15 and 313.15) K and at Atmospheric Pressure. Journal of Chemical & Engineering Data, 2008, 53, 1302-1308.	1.9	13
155	Osteoinductivity of nanostructured hydroxyapatiteâ€functionalized gelatin modulated by human and endogenous mesenchymal stromal cells. Journal of Biomedical Materials Research - Part A, 2018, 106, 914-923.	4.0	13
156	In vitro mineralization of gelatin-polyacrylic acid complex matrices. Journal of Biomaterials Science, Polymer Edition, 2004, 15, 243-254.	3.5	12
157	A new simplified calcifying solution to synthesize calcium phosphate coatings. Surface and Coatings Technology, 2013, 232, 13-21.	4.8	12
158	A radiopaque calcium phosphate bone cement with long-lasting antibacterial effect: From paste to injectable formulation. Ceramics International, 2020, 46, 10048-10057.	4.8	12
159	Novel drug-loaded film forming patch based on gelatin and snail slime. International Journal of Pharmaceutics, 2021, 598, 120408.	5.2	12
160	X-Ray Diffraction and Scanning Electron Microscopy of Bovine Media Aortic Wall. Connective Tissue Research, 1977, 5, 37-39.	2.3	11
161	Ultrastructural and Biochemical Modifications of Collagen from Tissue of Morbus Dupuytren Patients1. Journal of Biochemistry, 1995, 118, 405-410.	1.7	11
162	Incorporation of nanostructured hydroxyapatite and poly(<i>N</i> -isopropylacrylamide) in demineralized bone matrix enhances osteoblast and human mesenchymal stem cell activity. Biointerphases, 2015, 10, 041001.	1.6	11

#	Article	IF	CITATIONS
163	An innovative co-axial system to electrospin <i>in situ</i> crosslinked gelatin nanofibers. Biomedical Materials (Bristol), 2016, 11, 025007.	3.3	11
164	(9R)-9-Hydroxystearate-Functionalized Anticancer Ceramics Promote Loading of Silver Nanoparticles. Nanomaterials, 2018, 8, 390.	4.1	11
165	Fiber reinforcement of a biomimetic bone cement. Journal of Materials Science: Materials in Medicine, 2012, 23, 1363-1370.	3.6	10
166	Strontium substituted hydroxyapatite with \hat{l}^2 -lactam integrin agonists to enhance mesenchymal cells adhesion and to promote bone regeneration. Colloids and Surfaces B: Biointerfaces, 2021, 200, 111580.	5.0	10
167	Monetite vs. Brushite: Different Influences on Bone Cell Response Modulated by Strontium Functionalization. Journal of Functional Biomaterials, 2022, 13, 65.	4.4	10
168	Characterization of synthetic apatites for bioceramic implants. Biomaterials, 1980, 1, 140-144.	11.4	9
169	Electron microscopy studies of octa-calcium phosphate thin films obtained by pulsed laser deposition. Thin Solid Films, 2004, 453-454, 157-161.	1.8	9
170	Gelatin Porous Scaffolds as Delivery Systems of Calcium Alendronate. Macromolecular Bioscience, 2017, 17, 1600272.	4.1	9
171	Curcumin-Functionalized Gelatin Films: Antioxidant Materials with Modulated Physico-Chemical Properties. Polymers, 2021, 13, 1824.	4.5	8
172	Fast Coprecipitation of Calcium Phosphate Nanoparticles inside Gelatin Nanofibers by Tricoaxial Electrospinning. Journal of Nanomaterials, 2016, 2016, 1-7.	2.7	7
173	Hydroxyapatite Decorated with Tungsten Oxide Nanoparticles: New Composite Materials against Bacterial Growth. Journal of Functional Biomaterials, 2022, 13, 88.	4.4	7
174	Biomaterial Thin Films by Soft Pulsed Laser Technologies for Biomedical Applications. Springer Series in Materials Science, 2014, , 271-294.	0.6	6
175	Structural and chemical characterization of gallstones resistant to dissolution therapy. Journal of Inorganic Biochemistry, 1988, 32, 109-116.	3.5	5
176	Structural interplay between strontium and calcium in α-CaHPO4 and β-SrHPO4. Ceramics International, 2021, 47, 24412-24420.	4.8	5
177	Structural organization of collagen in Metridium senile. International Journal of Biological Macromolecules, 1985, 7, 19-24.	7.5	4
178	X-ray diffraction and continuous small-angle scattering of turkey tendons with the improved area detector at Frascati. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1991, 308, 285-290.	1.6	4
179	MECHANICAL PROPERTIES OF GREAT ARTERIAL WALL AND CLINICAL IMPLICATION. Journal of Mechanics in Medicine and Biology, 2002, 02, 231-244.	0.7	4
180	Combinatorial Laser Synthesis of Biomaterial Thin Films: Selection and Processing for Medical Applications. Springer Series in Materials Science, 2018, , 309-338.	0.6	4

#	Article	IF	CITATIONS
181	Collagen-apatite structural relationship in human tendons affected by pathological calcification in idiopathic skeletal hyperostosis. International Journal of Biological Macromolecules, 1986, 8, 212-216.	7.5	3
182	Age related changes in the thermal transition of Turkey leg flexor tendon collagen. Journal of Thermal Analysis, 1992, 38, 505-514.	0.6	3
183	Densities, Viscosities, Refractive Indices, and Heat Capacities of Four Poly(ethylene) Tj ETQq1 1 0.784314 rgBT /	Overlock 1 1.9	.0 Tf 50 672 3
	at (298.15 and 313.15) K and at Atmospheric Pressure. Journal of Chemical & Engineering Data, 2009, 54. 956-961.		
184	Cylindrical Layered Bone Scaffolds with Anisotropic Mechanical Properties as Potential Drug Delivery Systems. Molecules, 2019, 24, 1931.	3.8	3
185	Platinum nanoparticles supported on functionalized hydroxyapatite: Anti-oxidant properties and bone cells response. Ceramics International, 2020, 46, 19574-19582.	4.8	3
186	Structural and chemical characterization of a cutaneous calcification. Journal of Thermal Analysis, 1992, 38, 2719-2728.	0.6	2
187	Influence of Gelatin on the Setting Properties of α-Tricalcium Phosphate Cement. Key Engineering Materials, 2003, 254-256, 229-232.	0.4	2
188	PLLA Based Composites with α-Tricalcium Phosphate and a PLLA-PEO Diblock Copolymer. Macromolecular Symposia, 2006, 234, 26-32.	0.7	2
189	In Vivo and In Vitro Response to a Gelatin/α-Tricalcium Phosphate Bone Cement. Key Engineering Materials, 2008, 361-363, 1001-1004.	0.4	2
190	Strontium-Substituted Hydroxyapatite Thin Films Grown by Pulsed Laser Deposition. NATO Science for Peace and Security Series B: Physics and Biophysics, 2008, , 389-398.	0.3	2
191	Functionalization of octacalcium phosphate for bone replacement. , 2020, , 37-54.		2
192	A Fast Biomimetic Method for Nanocrystalline Hydroxyapatite Coatings. Key Engineering Materials, 2005, 284-286, 223-226.	0.4	1
193	Antiosteoporotic Nanohydroxyapatite Zoledronate Scaffold Seeded with Bone Marrow Mesenchymal Stromal Cells for Bone Regeneration: A 3D In Vitro Model. International Journal of Molecular Sciences, 2022, 23, 5988.	4.1	1
194	Bone Formation by Distraction Clinical and Structural Studies. Key Engineering Materials, 2001, 192-195, 941-946.	0.4	0
195	Fast Deposition of Nanocrystalline Hydroxyapatite into Additive Manufactured Titanium Porous Structures. Key Engineering Materials, 2011, 493-494, 458-461.	0.4	0