
Chang-Quan Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8458700/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evolutionary Analysis and Functional Identification of Clock-Associated PSEUDO-RESPONSE REGULATOR (PRRs) Genes in the Flowering Regulation of Roses. International Journal of Molecular Sciences, 2022, 23, 7335.	1.8	7
2	KSN heterozygosity is associated with continuous flowering of Rosa rugosa Purple branch. Horticulture Research, 2021, 8, 26.	2.9	23
3	Phytochrome-interacting factors interact with transcription factor CONSTANS to suppress flowering in rose. Plant Physiology, 2021, 186, 1186-1201.	2.3	11
4	Genome-wide analysis reveals widespread roles for RcREM genes in floral organ development in Rosa chinensis. Genomics, 2021, 113, 3881-3894.	1.3	7
5	Genome-wide identification and functional analysis of JmjC domain-containing genes in flower development of Rosa chinensis. Plant Molecular Biology, 2020, 102, 417-430.	2.0	17
6	Evolution of <i>SHORT VEGETATIVE PHASE</i> (<i>SVP</i>) genes in Rosaceae: Implications of lineageâ€specific gene duplication events and function diversifications with respect to their roles in processes other than bud dormancy. Plant Genome, 2020, 13, e20053.	1.6	9
7	<i>RcMYB84</i> and <i>RcMYB123</i> mediate jasmonateâ€induced defense responses against <i>Botrytis cinerea</i> in rose (<i>Rosa chinensis</i>). Plant Journal, 2020, 103, 1839-1849.	2.8	28
8	Alternate expression of CONSTANS-LIKE 4 in short days and CONSTANS in long days facilitates day-neutral response in Rosa chinensis. Journal of Experimental Botany, 2020, 71, 4057-4068.	2.4	31
9	The Bâ€box protein BBX19 suppresses seed germination via induction of <i>ABI5</i> . Plant Journal, 2019, 99, 1192-1202.	2.8	31
10	Rr <scp>MYB</scp> 5―and Rr <scp>MYB</scp> 10â€regulated flavonoid biosynthesis plays a pivotal role in feedback loop responding to wounding and oxidation in <i>Rosa rugosa</i> . Plant Biotechnology Journal, 2019, 17, 2078-2095.	4.1	63
11	MIKCC-type MADS-box genes in Rosa chinensis: the remarkable expansion of ABCDE model genes and their roles in floral organogenesis. Horticulture Research, 2018, 5, 25.	2.9	41
12	Medicinal Components and Pharmacological Effects of Rosa rugosa. Records of Natural Products, 2018, 12, 535-543.	1.3	16
13	ORA59 and EIN3 interaction couples jasmonateâ€ethylene synergistic action to antagonistic salicylic acid regulation of PDF expression. Journal of Integrative Plant Biology, 2017, 59, 275-287.	4.1	65
14	An efficient transient expression system for gene function analysis in rose. Plant Methods, 2017, 13, 116.	1.9	30
15	The plastidial retrograde signal methyl erythritol cyclopyrophosphate is a regulator of salicylic acid and jasmonic acid crosstalk. Journal of Experimental Botany, 2016, 67, 1557-1566.	2.4	51
16	From retrograde signaling to flowering time. Plant Signaling and Behavior, 2015, 10, e1022012.	1.2	18
17	The Transcriptional Regulator BBX19 Promotes Hypocotyl Growth by Facilitating COP1-Mediated EARLY FLOWERING3 Degradation in Arabidopsis. Plant Cell, 2015, 27, 1128-1139.	3.1	104
18	An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature, 2015, 517, 571-575.	13.7	636

CHANG-QUAN WANG

#	Article	IF	CITATIONS
19	A key general stress response motif is regulated nonâ€uniformly by <scp>CAMTA</scp> transcription factors. Plant Journal, 2014, 80, 82-92.	2.8	77
20	Functional Convergence of Oxylipin and Abscisic Acid Pathways Controls Stomatal Closure in Response to Drought Â. Plant Physiology, 2014, 164, 1151-1160.	2.3	241
21	BBX19 Interacts with CONSTANS to Repress <i>FLOWERING LOCUS T</i> Transcription, Defining a Flowering Time Checkpoint in <i>Arabidopsis</i> Â Â. Plant Cell, 2014, 26, 3589-3602.	3.1	137
22	Waterâ€stress mitigation by selenium in <i>Trifolium repens</i> L. Journal of Plant Nutrition and Soil Science, 2011, 174, 276-282.	1.1	74
23	Effect of Selenium on Ascorbate–Clutathione Metabolism During PEG-induced Water Deficit in Trifolium repens L Journal of Plant Growth Regulation, 2011, 30, 436-444.	2.8	27
24	Betacyanins from Portulaca oleracea L. ameliorate cognition deficits and attenuate oxidative damage induced by D-galactose in the brains of senescent mice. Phytomedicine, 2010, 17, 527-532.	2.3	69
25	EXOGENOUS CALCIUM ALTERS ACTIVITIES OF ANTIOXIDANT ENZYMES INTRIFOLIUM REPENSL. LEAVES UNDER PEG-INDUCED WATER DEFICIT. Journal of Plant Nutrition, 2010, 33, 1874-1885.	0.9	6
26	Enhanced Tonoplast H+-ATPase Activity and Superoxide Dismutase Activity in the Halophyte Suaeda salsa Containing High Level of Betacyanin. Journal of Plant Growth Regulation, 2008, 27, 58-67.	2.8	21
27	Scavenger Enzyme Activities in Subcellular Fractions of White Clover (Trifolium repens L.) under PEG-induced Water Stress. Journal of Plant Growth Regulation, 2008, 27, 387-393.	2.8	19
28	Betacyanin accumulation in the leaves of C3 halophyte Suaeda salsa L. is induced by watering roots with H2O2. Plant Science, 2007, 172, 1-7.	1.7	69
29	Correlation of tyrosinase activity and betacyanin biosynthesis induced by dark in C3 halophyte Suaeda salsa seedlings. Plant Science, 2007, 173, 487-494.	1.7	32
30	Ca ²⁺ almodulin is Involved in Betacyanin Accumulation Induced by Dark in C ₃ Halophyte <i>Suaeda salsa</i> . Journal of Integrative Plant Biology, 2007, 49, 1378-1385.	4.1	10
31	Identification of betacyanin and effects of environmental factors on its accumulation in halophyte Suaeda salsa. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao = Journal of Plant Physiology and Molecular Biology, 2006, 32, 195-201.	0.0	6