Swati Nagar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8458240/publications.pdf

Version: 2024-02-01

516710 454955 43 953 16 30 citations g-index h-index papers 44 44 44 1200 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Herb–Drug Interactions: Challenges and Opportunities for Improved Predictions. Drug Metabolism and Disposition, 2014, 42, 301-317.	3.3	148
2	Pharmacogenetics of Uridine Diphosphoglucuronosyltransferase (UGT) 1A Family Members and its Role in Patient Response to Irinotecan. Drug Metabolism Reviews, 2006, 38, 393-409.	3.6	102
3	Advancing Predictions of Tissue and Intracellular Drug Concentrations Using <i>InÂVitro</i> , Imaging and Physiologically Based Pharmacokinetic Modeling Approaches. Clinical Pharmacology and Therapeutics, 2018, 104, 865-889.	4.7	92
4	Role of pharmacogenetics in variable response to drugs: focus on opioids. Expert Opinion on Drug Metabolism and Toxicology, 2008, 4, 77-91.	3.3	58
5	Commentary: Nonspecific Protein Binding versus Membrane Partitioning: It Is Not Just Semantics. Drug Metabolism and Disposition, 2012, 40, 1649-1652.	3.3	57
6	Models to Predict Unbound Intracellular Drug Concentrations in the Presence of Transporters. Drug Metabolism and Disposition, 2012, 40, 865-876.	3.3	50
7	A physiologically based pharmacokinetic model to predict the pharmacokinetics of highly proteinâ€bound drugs and the impact of errors in plasma protein binding. Biopharmaceutics and Drug Disposition, 2016, 37, 123-141.	1.9	32
8	Enzyme Kinetics in Drug Metabolism: Fundamentals and Applications. Methods in Molecular Biology, 2014, 1113, 1-6.	0.9	31
9	Improved Predictions of Drug–Drug Interactions Mediated by Time-Dependent Inhibition of CYP3A. Molecular Pharmaceutics, 2018, 15, 1979-1995.	4.6	26
10	A Numerical Method for Analysis of In Vitro Time-Dependent Inhibition Data. Part 1. Theoretical Considerations. Drug Metabolism and Disposition, 2014, 42, 1575-1586.	3.3	25
11	Update on tools for evaluation of uridine diphosphoglucuronosyltransferase polymorphisms. Expert Opinion on Drug Metabolism and Toxicology, 2008, 4, 879-894.	3.3	22
12	A Numerical Method for Analysis of In Vitro Time-Dependent Inhibition Data. Part 2. Application to Experimental Data. Drug Metabolism and Disposition, 2014, 42, 1587-1595.	3.3	22
13	Drug Distribution Part 2. Predicting Volume of Distribution from Plasma Protein Binding and Membrane Partitioning. Pharmaceutical Research, 2017, 34, 544-551.	3.5	22
14	Compartmental Models for Apical Efflux by P-glycoproteinâ€"Part 1: Evaluation of Model Complexity. Pharmaceutical Research, 2014, 31, 347-359.	3.5	21
15	Time-dependent enzyme inactivation: Numerical analyses of in vitro data and prediction of drug-drug interactions., 2020, 206, 107449.		21
16	Mechanism-Based Inhibition of CYP3A4 by Podophyllotoxin: Aging of an Intermediate Is Important for in Vitro/in Vivo Correlations. Molecular Pharmaceutics, 2016, 13, 2833-2843.	4.6	19
17	Compartmental Models for Apical Efflux by P-glycoprotein: Part 2—A Theoretical Study on Transporter Kinetic Parameters. Pharmaceutical Research, 2014, 31, 335-346.	3.5	17
18	Prediction of Tissue-Plasma Partition Coefficients Using Microsomal Partitioning: Incorporation into Physiologically based Pharmacokinetic Models and Steady-State Volume of Distribution Predictions. Drug Metabolism and Disposition, 2019, 47, 1050-1060.	3.3	17

#	Article	IF	CITATIONS
19	Pharmacokinetics of Anti-Cancer Drugs Used in Breast Cancer Chemotherapy. Advances in Experimental Medicine and Biology, 2010, 678, 124-132.	1.6	16
20	In Vivo-Formed versus Preformed Metabolite Kinetics of <i>trans</i> -Resveratrol-3-sulfate and <i>trans</i> -Resveratrol-3-glucuronide. Drug Metabolism and Disposition, 2012, 40, 1993-2001.	3.3	16
21	On the Nature of Physiologically-Based Pharmacokinetic Models –A Priori or A Posteriori? Mechanistic or Empirical?. Pharmaceutical Research, 2017, 34, 529-534.	3.5	15
22	Pharmacokinetic application of a bioâ€analytical LCâ€MS method developed for 5â€fluorouracil and methotrexate in mouse plasma, brain and urine. Biomedical Chromatography, 2013, 27, 994-1002.	1.7	14
23	Intracellular Unbound Atorvastatin Concentrations in the Presence of Metabolism and Transport. Journal of Pharmacology and Experimental Therapeutics, 2016, 359, 26-36.	2.5	14
24	Drug Distribution. Part 1. Models to Predict Membrane Partitioning. Pharmaceutical Research, 2017, 34, 535-543.	3. 5	12
25	Continuous Intestinal Absorption Model Based on the Convection–Diffusion Equation. Molecular Pharmaceutics, 2017, 14, 3069-3086.	4.6	12
26	Methods to Predict Volume of Distribution. Current Pharmacology Reports, 2019, 5, 391-399.	3.0	7
27	Conjugative Metabolism of Drugs. , 0, , 37-88.		7
28	Impact of Lipid Partitioning on the Design, Analysis, and Interpretation of Microsomal Time-Dependent Inactivation. Drug Metabolism and Disposition, 2019, 47, 732-742.	3.3	6
29	Identification of domperidone metabolites in plasma and urine of gastroparesis patients with LC–ESI-MS/MS. Xenobiotica, 2013, 43, 1073-1083.	1.1	5
30	Domperidone interacts with pioglitazone but not with ondansetron via common CYP metabolism <i>iin vitro</i> i>. Xenobiotica, 2014, 44, 792-803.	1.1	5
31	A hybrid model to evaluate the impact of active uptake transport on hepatic distribution of atorvastatin in rats. Xenobiotica, 2020, 50, 536-544.	1.1	5
32	Numerical analysis of time-dependent inhibition kinetics: comparison between rat liver microsomes and rat hepatocyte data for mechanistic model fitting. Xenobiotica, 2020, 50, 1301-1310.	1.1	4
33	Complex Cytochrome P450 kinetics due to multisubstrate binding and sequential metabolism. Part 2. Modeling of experimental data. Drug Metabolism and Disposition, 2021, 49, DMD-AR-2021-000554.	3.3	4
34	A Permeability―and Perfusionâ€based <scp>PBPK</scp> model for Improved Prediction of Concentrationâ€time Profiles. Clinical and Translational Science, 2022, , .	3.1	4
35	Numerical Methods for Modeling Enzyme Kinetics. Methods in Molecular Biology, 2021, 2342, 147-168.	0.9	3
36	Case Study 2. Practical Analytical Considerations for Conducting In Vitro Enzyme Kinetic Studies. Methods in Molecular Biology, 2014, 1113, 431-439.	0.9	2

#	Article	IF	CITATIONS
37	Looking beyond the administered drug: metabolites of opioid analgesics. Journal of Family Practice, 2008, 57, S25-32.	0.2	2
38	Using Partition Analysis as a Facile Method to Derive Net Clearances. Clinical and Translational Science, 2022, , .	3.1	2
39	Complex Cytochrome P450 kinetics due to multisubstrate binding and sequential metabolism. Part 1. Theoretical considerations Drug Metabolism and Disposition, 2021, 49, DMD-AR-2021-000553.	3.3	1
40	 Predicting impact of food and feeding time on oral absorption of drugs with a novel rat continuous intestinal absorption model. Drug Metabolism and Disposition, 2022, , DMD-AR-2022-000831.	3.3	1
41	Case Study 2: Practical Analytical Considerations for Conducting In Vitro Enzyme Kinetic Studies. Methods in Molecular Biology, 2021, 2342, 643-652.	0.9	0
42	Improved Prediction Of Clinical Drugâ€Drug Interactions Using A Novel Numerical Method For Evaluation Of Timeâ€Dependent Inhibition Of Cytochrome P450. FASEB Journal, 2018, 32, 834.9.	0.5	0
43	Numerical method analysis of the activation and timeâ€dependent inhibition of midazolam metabolism by ticlopidine. FASEB Journal, 2020, 34, 1-1.	0.5	0