## Hailong Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8458201/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Aerial Surveillance in Cities: When UAVs Take Public Transportation Vehicles. IEEE Transactions on Automation Science and Engineering, 2023, 20, 1069-1080.                                       | 3.4 | 7         |
| 2  | Human-Machine Cooperative Trajectory Planning and Tracking for Safe Automated Driving. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 12050-12063.                            | 4.7 | 14        |
| 3  | Online UAV Trajectory Planning for Covert Video Surveillance of Mobile Targets. IEEE Transactions on Automation Science and Engineering, 2022, 19, 735-746.                                       | 3.4 | 25        |
| 4  | Navigation of a UAV Network for Optimal Surveillance of a Group of Ground Targets Moving Along a<br>Road. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 9281-9285.           | 4.7 | 24        |
| 5  | Asymptotically Optimal Path Planning for Ground Surveillance by a Team of UAVs. IEEE Systems<br>Journal, 2022, 16, 3446-3449.                                                                     | 2.9 | 9         |
| 6  | Deployment of Charging Stations for Drone Delivery Assisted by Public Transportation Vehicles. IEEE<br>Transactions on Intelligent Transportation Systems, 2022, 23, 15043-15054.                 | 4.7 | 12        |
| 7  | Robotic Herding of Farm Animals Using a Network of Barking Aerial Drones. Drones, 2022, 6, 29.                                                                                                    | 2.7 | 22        |
| 8  | Optimized deployment of UAV base stations for providing wireless communication service in urban environments. , 2022, , 159-178.                                                                  |     | 0         |
| 9  | Data collection in wireless sensor networks by ground robots with fixed trajectories. , 2022, , 83-101.                                                                                           |     | 0         |
| 10 | Wireless communication networks supported by autonomous UAVs: a survey. , 2022, , 37-55.                                                                                                          |     | 0         |
| 11 | Data collection in wireless sensor networks by ground robots with full freedom. , 2022, , 57-81.                                                                                                  |     | 0         |
| 12 | Energy-efficient path planning of a solar-powered UAV for secure communication in the presence of eavesdroppers and no-fly zones. , 2022, , 103-117.                                              |     | 0         |
| 13 | Multiobjective path planning of a solar-powered UAV for secure communication in urban environments with eavesdropping avoidance. , 2022, , 119-137.                                               |     | 0         |
| 14 | Survey of approaches for wireless communication networks supported by ground robots. , 2022, ,<br>9-36.                                                                                           |     | 0         |
| 15 | Reactive deployment of UAV base stations for providing wireless communication services. , 2022, , 139-157.                                                                                        |     | 0         |
| 16 | Decentralized Navigation of a UAV Team for Collaborative Covert Eavesdropping on a Group of Mobile<br>Ground Nodes. IEEE Transactions on Automation Science and Engineering, 2022, 19, 3932-3941. | 3.4 | 5         |
| 17 | Autonomous Navigation of an Aerial Drone to Observe a Group of Wild Animals With Reduced Visual Disturbance. IEEE Systems Journal, 2022, 16, 3339-3348.                                           | 2.9 | 5         |
| 18 | Energy-efficient path planning of solar-powered UAVs for communicating with mobile ground users in urban environments. , 2022, , 179-198.                                                         |     | 0         |

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Deployment of Heterogeneous UAV Base Stations for Optimal Quality of Coverage. IEEE Internet of<br>Things Journal, 2022, 9, 16429-16437.                                                          | 5.5 | 33        |
| 20 | Autonomous Guidance of an Aerial Drone for Maintaining an Effective Wireless Communication Link with a Moving Node Using an Intelligent Reflecting Surface. , 2022, , .                           |     | 4         |
| 21 | Disturbance observer based generalized wind/solar/battery consistent control strategy for<br><scp>AC</scp> microgrids. International Transactions on Electrical Energy Systems, 2021, 31, e12539. | 1.2 | 1         |
| 22 | Bioinspired Bearing Only Motion Camouflage UAV Guidance for Covert Video Surveillance of a Moving<br>Target. IEEE Systems Journal, 2021, 15, 5379-5382.                                           | 2.9 | 16        |
| 23 | Reliable Path Planning for Drone Delivery Using a Stochastic Time-Dependent Public Transportation<br>Network. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 4941-4950.       | 4.7 | 71        |
| 24 | Actuator fault tolerant control for steer-by-wire systems. International Journal of Control, 2021, 94, 3123-3134.                                                                                 | 1.2 | 10        |
| 25 | Drone Routing in a Time-Dependent Network: Toward Low-Cost and Large-Range Parcel Delivery. IEEE<br>Transactions on Industrial Informatics, 2021, 17, 1526-1534.                                  | 7.2 | 31        |
| 26 | Range-Based Reactive Deployment of Autonomous Drones for Optimal Coverage in Disaster Areas. IEEE<br>Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 4606-4610.                 | 5.9 | 24        |
| 27 | Path Planning for a Solar-Powered UAV Inspecting Mountain Sites for Safety and Rescue. Energies, 2021, 14, 1968.                                                                                  | 1.6 | 6         |
| 28 | Navigating UAVs for Optimal Monitoring of Groups of Moving Pedestrians or Vehicles. IEEE<br>Transactions on Vehicular Technology, 2021, 70, 3891-3896.                                            | 3.9 | 17        |
| 29 | Energy-efficient decentralized navigation of a team of solar-powered UAVs for collaborative eavesdropping on a mobile ground target in urban environments. Ad Hoc Networks, 2021, 117, 102485.    | 3.4 | 16        |
| 30 | Personalized Trajectory Planning and Control of Lane-Change Maneuvers for Autonomous Driving.<br>IEEE Transactions on Vehicular Technology, 2021, 70, 5511-5523.                                  | 3.9 | 48        |
| 31 | Decentralized Autonomous Navigation of a UAV Network for Road Traffic Monitoring. IEEE<br>Transactions on Aerospace and Electronic Systems, 2021, 57, 2558-2564.                                  | 2.6 | 46        |
| 32 | Optimal Deployment of Charging Stations for Aerial Surveillance by UAVs with the Assistance of Public Transportation Vehicles. Sensors, 2021, 21, 5320.                                           | 2.1 | 5         |
| 33 | Occlusion-Aware UAV Path Planning for Reconnaissance and Surveillance. Drones, 2021, 5, 98.                                                                                                       | 2.7 | 18        |
| 34 | Navigation of a UAV Team for Collaborative Eavesdropping on Multiple Ground Transmitters. IEEE<br>Transactions on Vehicular Technology, 2021, 70, 10450-10460.                                    | 3.9 | 12        |
| 35 | Wise Information Technology of Med: Human Pose Recognition in Elderly Care. Sensors, 2021, 21, 7130.                                                                                              | 2.1 | 6         |
| 36 | A 3D Vision Cone Based Method for Collision Free Navigation of a Quadcopter UAV among Moving Obstacles. Drones, 2021, 5, 134.                                                                     | 2.7 | 8         |

| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A Path Planning Method for Video Camera Equipped UAVs Monitoring a Ground Area. , 2021, , .                                                                                                      |     | Ο         |
| 38 | Surveillance of Remote Targets by UAVs. , 2021, , .                                                                                                                                              |     | 2         |
| 39 | An Algorithm of Reactive Collision Free 3-D Deployment of Networked Unmanned Aerial Vehicles for<br>Surveillance and Monitoring. IEEE Transactions on Industrial Informatics, 2020, 16, 132-140. | 7.2 | 76        |
| 40 | A method for deploying the minimal number of UAV base stations in cellular networks. IEEE/CAA<br>Journal of Automatica Sinica, 2020, 7, 559-567.                                                 | 8.5 | 8         |
| 41 | Reactive Autonomous Navigation of UAVs for Dynamic Sensing Coverage of Mobile Ground Targets.<br>Sensors, 2020, 20, 3720.                                                                        | 2.1 | 19        |
| 42 | Round Trip Routing for Energy-Efficient Drone Delivery Based on a Public Transportation Network.<br>IEEE Transactions on Transportation Electrification, 2020, 6, 1368-1376.                     | 5.3 | 39        |
| 43 | A Method for Covert Video Surveillance of a Car or a Pedestrian by an Autonomous Aerial Drone via<br>Trajectory Planning. , 2020, , .                                                            |     | 7         |
| 44 | Energy-Efficient Autonomous Navigation of Solar-Powered UAVs for Surveillance of Mobile Ground<br>Targets in Urban Environments. Energies, 2020, 13, 5563.                                       | 1.6 | 8         |
| 45 | Autonomous Navigation of a Solar-Powered UAV for Secure Communication in Urban Environments with Eavesdropping Avoidance. Future Internet, 2020, 12, 170.                                        | 2.4 | 7         |
| 46 | A Novel Method for Protecting Swimmers and Surfers From Shark Attacks Using Communicating<br>Autonomous Drones. IEEE Internet of Things Journal, 2020, 7, 9884-9894.                             | 5.5 | 8         |
| 47 | Autonomous Drone Shark Shield: A Novel Shark Repelling System for Protecting Swimmers and Surfers. , 2020, , .                                                                                   |     | 1         |
| 48 | A Method of Optimized Deployment of Charging Stations for Drone Delivery. IEEE Transactions on<br>Transportation Electrification, 2020, 6, 510-518.                                              | 5.3 | 45        |
| 49 | Energy-Efficient 3D Navigation of a Solar-Powered UAV for Secure Communication in the Presence of Eavesdroppers and No-Fly Zones. Energies, 2020, 13, 1445.                                      | 1.6 | 21        |
| 50 | A New Parcel Delivery System with Drones and a Public Train. Journal of Intelligent and Robotic<br>Systems: Theory and Applications, 2020, 100, 1341-1354.                                       | 2.0 | 22        |
| 51 | Navigation of a Network of Aerial Drones for Monitoring a Frontier of a Moving Environmental<br>Disaster Area. IEEE Systems Journal, 2020, 14, 4746-4749.                                        | 2.9 | 32        |
| 52 | Observerâ€based robust preview tracking control for a class of nonâ€linear systems. IET Control Theory<br>and Applications, 2020, 14, 991-998.                                                   | 1.2 | 10        |
| 53 | Securing UAV Communication in the Presence of Stationary or Mobile Eavesdroppers via Online 3D Trajectory Planning. IEEE Wireless Communications Letters, 2020, 9, 1211-1215.                    | 3.2 | 37        |
| 54 | Scheduling of a Parcel Delivery System Consisting of an Aerial Drone Interacting with Public Transportation Vehicles. Sensors, 2020, 20, 2045.                                                   | 2.1 | 24        |

| #  | Article                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | LMI-based Nonlinear State Observer for Vehicle Motion Tracking in Lane Change Manoeuvre. , 2020, , .                                                                                 |     | О         |
| 56 | Use of A UAV Base Station for Searching and Bio-inspired Covert Video Surveillance of Tagged Wild<br>Animals. , 2020, , .                                                            |     | 1         |
| 57 | Steering Angle Prediction for Autonomous Cars Based on Deep Neural Network Method*. , 2020, , .                                                                                      |     | 1         |
| 58 | A Convolutional Neural Network Method for Self-Driving Cars. , 2020, , .                                                                                                             |     | 2         |
| 59 | Review on human-machine shared control system of automated vehicles. , 2019, , .                                                                                                     |     | 9         |
| 60 | The cluster based compressive data collection for wireless sensor networks with a mobile sink. AEU -<br>International Journal of Electronics and Communications, 2019, 108, 206-214. | 1.7 | 15        |
| 61 | Optimized deployment of drone base station to improve user experience in cellular networks. Journal of Network and Computer Applications, 2019, 144, 49-58.                          | 5.8 | 25        |
| 62 | Reactive 3D deployment of a flying robotic network for surveillance of mobile targets. Computer Networks, 2019, 161, 172-182.                                                        | 3.2 | 25        |
| 63 | Asymptotically Optimal Deployment of Drones for Surveillance and Monitoring. Sensors, 2019, 19, 2068.                                                                                | 2.1 | 42        |
| 64 | Proactive Deployment of Aerial Drones for Coverage over Very Uneven Terrains: A Version of the 3D<br>Art Gallery Problem. Sensors, 2019, 19, 1438.                                   | 2.1 | 43        |
| 65 | A Method for Optimized Deployment of a Network of Surveillance Aerial Drones. IEEE Systems Journal, 2019, 13, 4474-4477.                                                             | 2.9 | 77        |
| 66 | Shared control of highly automated vehicles using steer-by-wire systems. IEEE/CAA Journal of Automatica Sinica, 2019, 6, 410-423.                                                    | 8.5 | 32        |
| 67 | Fault tolerant steer-by-wire systems: An overview. Annual Reviews in Control, 2019, 47, 98-111.                                                                                      | 4.4 | 44        |
| 68 | Control of a Novel Parcel Delivery System Consisting of a UAV and a Public Train. , 2019, , .                                                                                        |     | 7         |
| 69 | When Drones Take Public Transport: Towards Low Cost and Large Range Parcel Delivery. , 2019, , .                                                                                     |     | 9         |
| 70 | Control of Flying Robots for Monitoring of Moving Objects. , 2019, , .                                                                                                               |     | 0         |
| 71 | Optimal Control of a Hybrid UAV/Train Parcel Delivery System. , 2019, , .                                                                                                            |     | 4         |
| 72 | Sensor-Network-Based Navigation of a Mobile Robot for Extremum Seeking Using a Topology Map. IEEE<br>Transactions on Industrial Informatics, 2019, 15, 3962-3972.                    | 7.2 | 21        |

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Mobile robots in wireless sensor networks: A survey on tasks. Computer Networks, 2019, 148, 1-19.                                                                                                          | 3.2 | 78        |
| 74 | A Method for Optimized Deployment of Unmanned Aerial Vehicles for Maximum Coverage and Minimum<br>Interference in Cellular Networks. IEEE Transactions on Industrial Informatics, 2019, 15, 2638-2647.     | 7.2 | 66        |
| 75 | Deployment of Unmanned Aerial Vehicle Base Stations for Optimal Quality of Coverage. IEEE Wireless<br>Communications Letters, 2019, 8, 321-324.                                                            | 3.2 | 111       |
| 76 | Reactive Deployment of Flying Robot Base Station over Disaster Areas. , 2018, , .                                                                                                                          |     | 3         |
| 77 | On the Problem of Flying Robots Deployment to Improve Cellular User Experience. , 2018, , .                                                                                                                |     | 4         |
| 78 | Towards the Internet of Flying Robots: A Survey. Sensors, 2018, 18, 4038.                                                                                                                                  | 2.1 | 52        |
| 79 | An Algorithm of Efficient Proactive Placement of Autonomous Drones for Maximum Coverage in<br>Cellular Networks. IEEE Wireless Communications Letters, 2018, 7, 994-997.                                   | 3.2 | 42        |
| 80 | Optimal Aircraft Planar Navigation in Static Threat Environments. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53, 2413-2426.                                                              | 2.6 | 31        |
| 81 | An energy efficient approach for data collection in wireless sensor networks using public<br>transportation vehicles. AEU - International Journal of Electronics and Communications, 2017, 75,<br>108-118. | 1.7 | 44        |
| 82 | Delay-aware data collection in wireless sensor networks with mobile nodes. , 2017, , .                                                                                                                     |     | 1         |
| 83 | Viable path planning for data collection robots in a sensing field with obstacles. Computer Communications, 2017, 111, 84-96.                                                                              | 3.1 | 45        |
| 84 | I-UMDPC: The Improved-Unusual Message Delivery Path Construction for Wireless Sensor Networks<br>With Mobile Sinks. IEEE Internet of Things Journal, 2017, 4, 1528-1536.                                   | 5.5 | 18        |
| 85 | Data Collection in Nonuniformly Deployed Wireless Sensor Networks by Public Transportation Vehicles. , 2017, , .                                                                                           |     | 2         |
| 86 | The problem of minimum risk path planning for flying robots in dangerous environments. , 2016, , .                                                                                                         |     | 5         |
| 87 | Path planning algorithms for a mobile robot collecting data in a wireless sensor network deployed in a region with obstacles. , 2016, , .                                                                  |     | 6         |
| 88 | Optimal path planning for a vehicle collecting data in a Wireless Sensor Network. , 2016, , .                                                                                                              |     | 13        |