Adela R Mauri I Aucejo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8458166/publications.pdf

Version: 2024-02-01

		623188	676716
55	692	14	22
papers	citations	h-index	g-index
56	56	56	592
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Simultaneous determination of third-generation synthetic cannabinoids in oral fluids using cyclodextrin-silica porous sorbents. Microchemical Journal, 2022, 172, 106915.	2.3	6
2	Mesoporous silica sorbent with gold nanoparticles for solid-phase extraction of organochlorine pesticides in water samples. Journal of Chromatography A, 2022, 1662, 462729.	1.8	12
3	Assessment of migrating endocrine-disrupting chemicals in bottled acidic juice using type UVM-7 mesoporous silica modified with cyclodextrin. Food Chemistry, 2022, 380, 132207.	4.2	7
4	A \hat{l}^2 -cyclodextrin sorbent based on hierarchical mesoporous silica for the determination of endocrine-disrupting chemicals in urine samples. Journal of Chromatography A, 2022, 1671, 463007.	1.8	5
5	A type UVM-7 mesoporous silica with \hat{I}^3 -cyclodextrin for the isolation of three veterinary antibiotics (ofloxacin, norfloxacin, and ciprofloxacin) from different fat-rate milk samples. Journal of Food Composition and Analysis, 2022, 109, 104463.	1.9	3
6	Iron-Doped Bimodal Mesoporous Silica Nanomaterials as Sorbents for Solid-Phase Extraction of Perfluoroalkyl Substances in Environmental Water Samples. Nanomaterials, 2022, 12, 1441.	1.9	0
7	Smartphone-based colorimetric study of adulterated tuna samples. Food Chemistry, 2022, 389, 133063.	4.2	7
8	Enhancing extraction performance of organophosphorus flame retardants in water samples using titanium hierarchical porous silica materials as sorbents. Journal of Chromatography A, 2021, 1639, 461938.	1.8	10
9	Host-guest interactions for extracting antibiotics with a \hat{I}^3 -cyclodextrin poly(glycidyl-co-ethylene) Tj ETQq1 1 0.7	'84314 rgl	BT /Qverlock 1
10	Cyclodextrins as a Key Piece in Nanostructured Materials: Quantitation and Remediation of Pollutants. Nanomaterials, 2021, 11, 7.	1.9	13
10	Cyclodextrins as a Key Piece in Nanostructured Materials: Quantitation and Remediation of Pollutants. Nanomaterials, 2021, 11, 7. Comparison of silica-based materials for organophosphorus pesticides sampling and occupational risk assessment. Analytica Chimica Acta, 2020, 1110, 26-34.	1.9 2.6	13
	Póllutants. Nanomatérials, 2021, 11, 7. Comparison of silica-based materials for organophosphorus pesticides sampling and occupational		
11	Póllutants. Nanomatérials, 2021, 11, 7. Comparison of silica-based materials for organophosphorus pesticides sampling and occupational risk assessment. Analytica Chimica Acta, 2020, 1110, 26-34. Bimodal porous silica nanomaterials as sorbents for an efficient and inexpensive determination of	2.6	12
11 12	Póllutants. Nanomatérials, 2021, 11, 7. Comparison of silica-based materials for organophosphorus pesticides sampling and occupational risk assessment. Analytica Chimica Acta, 2020, 1110, 26-34. Bimodal porous silica nanomaterials as sorbents for an efficient and inexpensive determination of aflatoxin M1 in milk and dairy products. Food Chemistry, 2020, 333, 127421. A new proposal for the determination of polychlorinated biphenyls in environmental water by using	2.6	12
11 12 13	Póllutants. Nanomatérials, 2021, 11, 7. Comparison of silica-based materials for organophosphorus pesticides sampling and occupational risk assessment. Analytica Chimica Acta, 2020, 1110, 26-34. Bimodal porous silica nanomaterials as sorbents for an efficient and inexpensive determination of aflatoxin M1 in milk and dairy products. Food Chemistry, 2020, 333, 127421. A new proposal for the determination of polychlorinated biphenyls in environmental water by using host-guest adsorption. Science of the Total Environment, 2020, 724, 138266. A poly(glycidyl-co-ethylene dimethacrylate) nanohybrid modified with β-cyclodextrin as a sorbent for	2.6 4.2 3.9	12 18
11 12 13	Póllutants. Nanomatérials, 2021, 11, 7. Comparison of silica-based materials for organophosphorus pesticides sampling and occupational risk assessment. Analytica Chimica Acta, 2020, 1110, 26-34. Bimodal porous silica nanomaterials as sorbents for an efficient and inexpensive determination of aflatoxin M1 in milk and dairy products. Food Chemistry, 2020, 333, 127421. A new proposal for the determination of polychlorinated biphenyls in environmental water by using host-guest adsorption. Science of the Total Environment, 2020, 724, 138266. A poly(glycidyl-co-ethylene dimethacrylate) nanohybrid modified with β-cyclodextrin as a sorbent for solid-phase extraction of phenolic compounds. Mikrochimica Acta, 2019, 186, 615. Extraction of aflatoxins by using mesoporous silica (type UVM-7), and their quantitation by HPLC-MS.	2.6 4.2 3.9 2.5	12 18 13
11 12 13 14	Pollutants. Nanomaterials, 2021, 11, 7. Comparison of silica-based materials for organophosphorus pesticides sampling and occupational risk assessment. Analytica Chimica Acta, 2020, 1110, 26-34. Bimodal porous silica nanomaterials as sorbents for an efficient and inexpensive determination of aflatoxin M1 in milk and dairy products. Food Chemistry, 2020, 333, 127421. A new proposal for the determination of polychlorinated biphenyls in environmental water by using host-guest adsorption. Science of the Total Environment, 2020, 724, 138266. A poly(glycidyl-co-ethylene dimethacrylate) nanohybrid modified with β-cyclodextrin as a sorbent for solid-phase extraction of phenolic compounds. Mikrochimica Acta, 2019, 186, 615. Extraction of aflatoxins by using mesoporous silica (type UVM-7), and their quantitation by HPLC-MS. Mikrochimica Acta, 2019, 186, 792. Design, characterization and comparison of materials based on β and γ cyclodextrin covalently connected to microporous silica for environmental analysis. Journal of Chromatography A, 2018, 1563,	2.6 4.2 3.9 2.5	12 18 13 12 20

#	Article	IF	CITATIONS
19	Comparison of the solid-phase extraction efficiency of a bounded and an included cyclodextrin-silica microporous composite for polycyclic aromatic hydrocarbons determination in water samples. Talanta, 2016, 156-157, 95-103.	2.9	30
20	Evaluation of a Cyclodextrin-silica Hybrid Microporous Composite for the Solid-phase Extraction of Polycyclic Aromatic Hydrocarbons. Analytical Sciences, 2016, 32, 659-665.	0.8	9
21	Enlarged pore size in nanoparticulated bimodal porous silicas: Improving accessibility. Microporous and Mesoporous Materials, 2016, 221, 150-158.	2.2	9
22	Determination of phenolic compounds in air by using cyclodextrin-silica hybrid microporous composite samplers. Talanta, 2015, 134, 560-567.	2.9	16
23	Mesoporous iron phosphate/phosphonate hybrid materials. Microporous and Mesoporous Materials, 2014, 187, 14-22.	2.2	13
24	Samplers for VOCs in air based on cyclodextrin–silica hybrid microporous solid phases. Analyst, The, 2012, 137, 1275.	1.7	13
25	Comparative evaluation of liquid chromatography versus gas chromatography using a \hat{l}^2 -cyclodextrin stationary phase for the determination of BTEX in occupational environments. Talanta, 2009, 78, 1286-1292.	2.9	24
26	Application of pressurized fluid extraction to determine cadmium and zinc in plants. Analytica Chimica Acta, 2007, 581, 78-82.	2.6	14
27	Desorption of BTEX from activated charcoal using accelerated solvent extraction: evaluation of occupational exposures. Analytical and Bioanalytical Chemistry, 2007, 387, 1517-1523.	1.9	8
28	Detection of bias errors in ETAASDetermination of copper in beer and wine samples. Talanta, 2006, 68, 1640-1647.	2.9	25
29	Chromatographic Separation of Cresol Isomers by a β yclodextrin: Application for the Determination of Volatile Phenols in Alcoholic Beverages. Analytical Letters, 2006, 39, 183-195.	1.0	7
30	Characterisation of quaternary mixtures by the apparent content curves method: identification of tocopherols in vegetable oils. Analytical and Bioanalytical Chemistry, 2003, 375, 643-652.	1.9	4
31	Spectrophotometric determination of chromium with diphenylcarbazide in the presence of vanadium, molybdenum, and iron after separation by solid-phase extraction. Fresenius' Journal of Analytical Chemistry, 2001, 371, 358-363.	1.5	17
32	Fluorimetric determination of amphetamine in urine by flow injection with on-line liquid–liquid extraction. Microchemical Journal, 2001, 69, 199-204.	2.3	6
33	Detection and correction of interferences in spectroscopy techniques. Analytica Chimica Acta, 2001, 426, 135-146.	2.6	13
34	Clean up Procedures for Determination of Amphetamine in Urine Samples Analytical Letters, 2000, 33, 1827-1842.	1.0	2
35	Identification and determination of amphetamine and methamphetamine in street drugs. Microchemical Journal, 2000, 64, 201-205.	2.3	6
36	Application of ACC method to synchronous luminiscence: determination of α-tocopherol and α-tocopheryl acetate in beverages. Fresenius' Journal of Analytical Chemistry, 2000, 367, 485-490.	1.5	3

#	Article	IF	CITATIONS
37	Preconcentration and speciation of chromium in waters using solid-phase extraction and atomic absorption spectrometry. Talanta, 2000, 51, 531-536.	2.9	80
38	Intersection point method (IPM): theoretical basis and application to spectrophotometric analyses. Fresenius' Journal of Analytical Chemistry, 1997, 357, 572-576.	1.5	2
39	Determination of Creatinine in Plasma by the Apparent Content Curves Method. Analytical Letters, 1996, 29, 1351-1364.	1.0	1
40	Indirect Determination of Cyanide by Atomic Absorption Spectrometry. Analytical Letters, 1995, 28, 2247-2258.	1.0	10
41	Determination of Caffeine in Analgesic Formulations Using the Apparent Content Curves Method. Analytical Letters, 1994, 27, 2317-2330.	1.0	8
42	Use of the Apparent Content Curves for the spectrophotometric identification of substances: identification of amphetamines. Fresenius' Journal of Analytical Chemistry, 1994, 350, 706-711.	1.5	8
43	Apparent content curves: a method to resolve spectral interferences in samples with n components. Analytica Chimica Acta, 1993, 282, 671-677.	2.6	10
44	Apparent content curves: new analytical applications. Fresenius' Journal of Analytical Chemistry, 1993, 346, 888-895.	1.5	9
45	Continuous flow photocatalytic degradation of carbaryl in aqueous media. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 1993, 28, 431-445.	0.7	20
46	Spectrophotometric Determination of Theophylline in Pharmaceuticals Employing the Apparent Content Curves to Resolve Spectral Interferences. Analytical Letters, 1993, 26, 641-655.	1.0	11
47	Direct determination of copper and iron in edible oils using flow injection flame atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 1991, 6, 581-584.	1.6	29
48	Flame atomic absorption analysis of gold in jewelry samples. Fresenius' Journal of Analytical Chemistry, 1990, 338, 699-702.	1.5	6
49	Vapor-phase introduction of alkyltin compounds in atomic absorption spectrophotometry. Microchemical Journal, 1990, 42, 176-186.	2.3	3
50	Volatilisation of cobalt chelates for their direct introduction in the vapour phase in flame atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 1990, 5, 325.	1.6	17
51	Speciation of lead alkyl compounds by flame atomic absorption spectrometry with vapour phase sample introduction. Journal of Analytical Atomic Spectrometry, 1989, 4, 539-542.	1.6	8
52	Atomic absorption spectrometric determination of gasoline additives by vapour phase sample introduction. Journal of Analytical Atomic Spectrometry, 1988, 3, 1035-1038.	1.6	19
53	Multi-component determination of lanthanum, cerium, praseodymium and neodymium by flame atomic emission spectrometry. Journal of Analytical Atomic Spectrometry, 1988, 3, 1111-1114.	1.6	7
54	Determination of tyrosine and phenylalanine by derivatization with nitric acid and differential pulse polarography. Microchemical Journal, 1987, 36, 113-117.	2.3	2

#	Article	IF	CITATIONS
55	Phosphate determination in environmental, biological and industrial samples using a smartphone as a capture device. New Journal of Chemistry, 0, , .	1.4	3