List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8457938/publications.pdf Version: 2024-02-01

		331259	377514
92	4,312	21	34
papers	citations	h-index	g-index
100	100	100	2000
122	122	122	2999
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	ColO-RAN: Developing Machine Learning-Based xApps for Open RAN Closed-Loop Control on Programmable Experimental Platforms. IEEE Transactions on Mobile Computing, 2023, 22, 5787-5800.	3.9	31
2	Editorial: Advances in experimental wireless platforms and systems. Computer Networks, 2022, 203, 108699.	3.2	1
3	Securing Bluetooth Low Energy networking: An overview of security procedures and threats. Computer Networks, 2022, 211, 108953.	3.2	15
4	SteaLTE: Private 5G Cellular Connectivity as a Service with Full-stack Wireless Steganography. , 2021, , .		8
5	Creating RF Scenarios for Large-scale, Real-time Wireless Channel Emulators. , 2021, , .		8
6	Jamming detection at the edge of drone networks using Multi-layer Perceptrons and Decision Trees. Applied Soft Computing Journal, 2021, 111, 107806.	4.1	20
7	Intelligence and Learning in O-RAN for Data-Driven NextG Cellular Networks. IEEE Communications Magazine, 2021, 59, 21-27.	4.9	110
8	Colosseum: Large-Scale Wireless Experimentation Through Hardware-in-the-Loop Network Emulation. , 2021, , .		34
9	QCell: Self-optimization of Softwarized 5G Networks through Deep Q-learning. , 2021, , .		6
10	Wake-up radio-based data forwarding for green wireless networks. Computer Communications, 2020, 160, 172-185.	3.1	8
11	CellOS: Zero-touch Softwarized Open Cellular Networks. Computer Networks, 2020, 180, 107380.	3.2	33
12	Outdoor mmWave Channel Propagation Models using Clustering Algorithms. , 2020, , .		0
13	Open, Programmable, and Virtualized 5G Networks: State-of-the-Art and the Road Ahead. Computer Networks, 2020, 182, 107516.	3.2	128
14	Design, Development, and Testing of a Smart Buoy for Underwater Testbeds in Shallow Waters. , 2020, , .		8
15	Comparative Performance Evaluation of mmWave 5G NR and LTE in a Campus Scenario. , 2020, , .		5
16	MARLIN-Q: Multi-modal communications for reliable and low-latency underwater data delivery. Ad Hoc Networks, 2019, 82, 134-145.	3.4	28
17	Wake-up Radio Ranges: A Performance Study. , 2019, , .		13
18	CARMA: Channel-Aware Reinforcement Learning-Based Multi-Path Adaptive Routing for Underwater Wireless Sensor Networks, IEFE Journal on Selected Areas in Communications, 2019, 37, 2634-2647	9.7	69

#	Article	IF	CITATIONS
19	Clustering Algorithms and Validation Indices for a Wide mmWave Spectrum. Information (Switzerland), 2019, 10, 287.	1.7	4
20	Enabling the Mobile IoT: Wake-up Unmanned Aerial Systems for Long-Lived Data Collection. , 2019, , .		4
21	Clustering Algorithms and Validation Indices for mmWave Radio Multipath Propagation. , 2019, , .		7
22	Multi-Hop Wake-Up Radio Relaying for the Collection Tree Protocol. , 2019, , .		4
23	Path Finding for Maximum Value of Information in Multi-Modal Underwater Wireless Sensor Networks. IEEE Transactions on Mobile Computing, 2018, 17, 404-418.	3.9	103
24	On the Impact of Local Computation Over Routing Performance in Green Wireless Networks. , 2018, , .		2
25	The SEANet Project: Toward a Programmable Internet of Underwater Things. , 2018, , .		24
26	Harnessing HyDRO. , 2018, , .		20
27	Wake-Up Radio-Enabled Routing for Green Wireless Sensor Networks. , 2017, , .		8
28	mmWave channel propagation modeling for V2X communication systems. , 2017, , .		19
29	WHARP: A Wake-Up Radio and Harvesting-Based Forwarding Strategy for Green Wireless Networks. , 2017, , .		11
30	Finding MARLIN: Exploiting multi-modal communications for reliable and low-latency underwater networking. , 2017, , .		32
31	An all-digital receiver for low power, low bit-rate applications using simultaneous wireless information and power transmission. , 2016, , .		4
32	Testbed-based performance evaluation of handshake-free MAC protocols for underwater acoustic sensor networks. , 2016, , .		6
33	CTP-WUR: The collection tree protocol in wake-up radio WSNs for critical applications. , 2016, , .		26
34	On signaling power: Communications over wireless energy. , 2016, , .		8
35	WiEnum: Node enumeration in wireless networks. , 2015, , .		1
36	Beyond duty cycling: Wake-up radio with selective awakenings for long-lived wireless sensing systems. , 2015, , .		103

STEFANO BASAGNI

#	Article	IF	CITATIONS
37	RF energy harvester-based wake-up receiver. , 2015, , .		6
38	Wireless sensor networks with RF energy harvesting: Energy models and analysis. , 2015, , .		44
39	Smart RF energy harvesting communications: challenges and opportunities. , 2015, 53, 70-78.		171
40	CARP: A Channel-aware routing protocol for underwater acoustic wireless networks. Ad Hoc Networks, 2015, 34, 92-104.	3.4	149
41	REACH ² -Mote. ACM Transactions on Sensor Networks, 2015, 11, 1-33.	2.3	17
42	Surviving wireless energy interference in RF-harvesting sensor networks: An empirical study. , 2014, , .		6
43	Implementation of multi-path energy routing. , 2014, , .		13
44	Experimental study of concurrent data and wireless energy transfer for sensor networks. , 2014, , .		42
45	Channel replay-based performance evaluation of protocols for underwater routing. , 2014, , .		14
46	ALBA-R: Load-Balancing Geographic Routing Around Connectivity Holes in Wireless Sensor Networks. IEEE Transactions on Parallel and Distributed Systems, 2014, 25, 529-539.	4.0	87
47	Maximizing the value of sensed information in underwater wireless sensor networks via an autonomous underwater vehicle. , 2014, , .		70
48	Scheduling data transmissions of underwater sensor nodes for maximizing value of information. , 2013, , .		24
49	Range extension of passive wake-up radio systems through energy harvesting. , 2013, , .		33
50	Experimental demonstration of multi-hop RF energy transfer. , 2013, , .		30
51	Mobile ad hoc backbones for multi-radio networks. , 2012, , .		0
52	Optimized Packet Size Selection in Underwater Wireless Sensor Network Communications. IEEE Journal of Oceanic Engineering, 2012, 37, 321-337.	2.1	57
53	Modeling the residual energy and lifetime of energy harvesting sensor nodes. , 2012, , .		22

54 Channel-aware routing for underwater wireless networks. , 2012, , .

45

#	Article	IF	CITATIONS
55	Coordinated and controlled mobility of multiple sinks for maximizing the lifetime of wireless sensor networks. Wireless Networks, 2011, 17, 759-778.	2.0	63
56	M-Backs: Mobile backbones for multi-hop wireless networks. , 2011, , .		3
57	Using Multiple Radios for Ad Hoc Backbone Construction and Maintenance. , 2011, , .		0
58	Location Management in Multi-Hop Wireless Sensor Networks. , 2010, , 805-833.		0
59	Multiplexing data and control channels in random access underwater networks. , 2009, , .		3
60	ROME: Routing Over Mobile Elements in WSNs. , 2009, , .		8
61	The multi-radio advantage. , 2009, , .		3
62	BlueFlows: Routing and flow admission in bluetooth PANs. , 2009, , .		0
63	Controlled sink mobility for prolonging wireless sensor networks lifetime. Wireless Networks, 2008, 14, 831-858.	2.0	332
64	Mitigating the impact of node mobility on ad hoc clustering. Wireless Communications and Mobile Computing, 2008, 8, 295-308.	0.8	33
65	Efficiently reconfigurable backbones for wireless sensor networks. Computer Communications, 2008, 31, 668-698.	3.1	19
66	Flow-fair Intra-Piconet (Fâ""IP) Scheduling for Communications in Personal Area Networks. , 2008, , .		1
67	On the effects of multiple beacons on localization for wireless sensor networks. Wireless Telecommunications Symposium, 2009 WTS 2009, 2008, , .	0.0	2
68	Localization Error-Resilient Geographic Routing for Wireless Sensor Networks. , 2008, , .		10
69	The effect of multi-radio nodes on network connectivity a graph theoretic analysis. , 2008, , .		11
70	Demonstrating the Resilience of Geographical Routing to Localization Errors. , 2007, , .		1
71	Fail-Safe Hierarchical Organization for Wireless Sensor Networks. , 2007, , .		4
72	Fault-Tolerant and Load Balancing Localization of Services in Wireless Sensor Networks. Vehicular Technology Conference-Fall (VTC-FALL), Proceedings, IEEE, 2007, , .	0.0	6

#	Article	IF	CITATIONS
73	Localization for Wireless Sensor Networks: Protocols and Perspectives. , 2007, , .		18
74	Recent research directions in wireless ad hoc networking. Ad Hoc Networks, 2007, 5, 1205-1207.	3.4	2
75	Controlled Vs. Uncontrolled Mobility in Wireless Sensor Networks: Some Performance Insights. Vehicular Technology Conference-Fall (VTC-FALL), Proceedings, IEEE, 2007, , .	0.0	26
76	Editors Foreword to the Special Issue on Principles of Mobile Communications and Computing. Algorithmica, 2007, 49, 259-263.	1.0	0
77	Localized protocols for ad hoc clustering and backbone formation: a performance comparison. IEEE Transactions on Parallel and Distributed Systems, 2006, 17, 292-306.	4.0	124
78	A New MILP Formulation and Distributed Protocols for Wireless Sensor Networks Lifetime Maximization. , 2006, , .		35
79	Bluetooth Scatternet Formation and Scheduling: An Integrated Solution. , 2006, , .		4
80	Location Discovery. , 2005, , 231-254.		10
81	BlueMesh: Degree-Constrained Multi-Hop Scatternet Formation for Bluetooth Networks. Mobile Networks and Applications, 2004, 9, 33-47.	2.2	62
82	Comparative Performance Evaluation of Scatternet Formation Protocols for Networks of Bluetooth Devices. Wireless Networks, 2004, 10, 197-213.	2.0	47
83	Configuring bluestars: multihop scatternet formation for bluetooth networks. IEEE Transactions on Computers, 2003, 52, 779-790.	2.4	116
84	Remarks on Ad Hoc Networking. Lecture Notes in Computer Science, 2002, , 101-123.	1.0	0
85	Location aware, dependable multicast for mobile ad hoc networks. Computer Networks, 2001, 36, 659-670.	3.2	46
86	Finding a Maximal Weighted Independent Set in Wireless Networks. Telecommunication Systems, 2001, 18, 155-168.	1.6	83
87	A logarithmic lower bound for timeâ€spread multipleâ€access (TSMA) protocols. Wireless Networks, 2000, 6, 161-163.	2.0	8
88	An overview of the University of Texas at Dallas' center for advanced telecommunications systems and services (CATSS). Mobile Computing and Communications Review, 2000, 4, 63-69.	1.7	0
89	A mobility-transparent deterministic broadcast mechanism for ad hoc networks. IEEE/ACM Transactions on Networking, 1999, 7, 799-807.	2.6	89
90	A note on causal trees and their applications to CCS. International Journal of Computer Mathematics, 1999, 71, 137-159.	1.0	3

10

#	Article	IF	CITATIONS
91	A distance routing effect algorithm for mobility (DREAM). , 1998, , .		919

92 Wireless Media Access Control. , 0, , 119-143.