Siara Silvestri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8457718/publications.pdf

Version: 2024-02-01

393982 454577 41 996 19 30 citations h-index g-index papers 46 46 46 821 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A review of the occurrence, disposal, determination, toxicity and remediation technologies of the tetracycline antibiotic. Chemical Engineering Research and Design, 2022, 160, 25-40.	2.7	86
2	TiO2 supported on Salvinia molesta biochar for heterogeneous photocatalytic degradation of Acid Orange 7 dye. Journal of Environmental Chemical Engineering, 2019, 7, 102879.	3.3	69
3	Biological degradation coupled to photocatalysis by ZnO/polypyrrole composite for the treatment of real textile wastewater. Journal of Water Process Engineering, 2020, 35, 101230.	2.6	66
4	Synthesis of PPy-ZnO composite used as photocatalyst for the degradation of diclofenac under simulated solar irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 375, 261-269.	2.0	65
5	Relationship of the physicochemical properties of novel ZnO/biochar composites to their efficiencies in the degradation of sulfamethoxazole and methyl orange. Science of the Total Environment, 2020, 748, 141381.	3.9	62
6	New composite of pecan nutshells biochar-ZnO for sequential removal of acid red 97 by adsorption and photocatalysis. Biomass and Bioenergy, 2020, 140, 105648.	2.9	57
7	Wastewater containing emerging contaminants treated by residues from the brewing industry based on biochar as a new CuFe2O4 / biochar photocatalyst. Chemical Engineering Research and Design, 2021, 150, 497-509.	2.7	51
8	Preparation of TiO ₂ supported on MDF biochar for simultaneous removal of methylene blue by adsorption and photocatalysis. Journal of Chemical Technology and Biotechnology, 2020, 95, 2723-2729.	1.6	44
9	Preparation and characterization of Fe2O3/TiO2/clay plates and their use as photocatalysts. Ceramics International, 2017, 43, 14057-14062.	2.3	37
10	Reactive oxygen speciesâ€induced heterogeneous photocatalytic degradation of organic pollutant Rhodamine B by copper and zinc aluminate spinels. Journal of Chemical Technology and Biotechnology, 2020, 95, 791-797.	1.6	33
11	Polypyrrole-TiO2 composite for removal of 4-chlorophenol and diclofenac. Reactive and Functional Polymers, 2020, 146, 104401.	2.0	33
12	Preparation of a new green composite based on chitin biochar and ZnFe2O4 for photo-Fenton degradation of Rhodamine B. Journal of Alloys and Compounds, 2022, 901, 163758.	2.8	32
13	TiO ₂ nanoparticles coated with deep eutectic solvents: characterization and effect on photodegradation of organic dyes. New Journal of Chemistry, 2019, 43, 1415-1423.	1.4	26
14	Conversion of spent coffee grounds to biochar as promising TiO ₂ support for effective degradation of diclofenac in water. Applied Organometallic Chemistry, 2020, 34, e6001.	1.7	26
15	New insights into the mechanism of heterogeneous activation of nano–magnetite by microwave irradiation for use as Fenton catalyst. Journal of Environmental Chemical Engineering, 2020, 8, 103787.	3.3	26
16	Supported porphyrins for the photocatalytic degradation of organic contaminants in water: a review. Environmental Chemistry Letters, 2022, 20, 731-771.	8.3	25
17	Preparation of delafossite–type CuFeO2 powders by conventional and microwave–assisted hydrothermal routes for use as photo–Fenton catalysts. Journal of Environmental Chemical Engineering, 2019, 7, 102954.	3.3	24
18	ZnAl2O4 supported on lychee-biochar applied to ibuprofen photodegradation. Materials Research Bulletin, 2022, 145, 111530.	2.7	24

#	Article	IF	CITATIONS
19	Degradation of methylene blue using Zn2SnO4 catalysts prepared with pore-forming agents. Materials Research Bulletin, 2019, 117, 56-62.	2.7	21
20	Investigation of the reaction pathway for degradation of emerging contaminant in water by photo-Fenton oxidation using fly ash as low-cost raw catalyst. International Journal of Environmental Research, 2020, 14, 427-438.	1.1	20
21	Application of a novel rGO-CuFeS2 composite catalyst conjugated to microwave irradiation for ultra-fast real textile wastewater treatment. Journal of Water Process Engineering, 2020, 36, 101397.	2.6	20
22	Improved catalytic activity of EDTA–modified BiFeO3 powders for remarkable degradation of procion red by heterogeneous photo–Fenton process. Journal of Environmental Chemical Engineering, 2020, 8, 103853.	3.3	17
23	A novel tin ferrite/polymer composite use in photo-Fenton reactions. International Journal of Environmental Science and Technology, 2021, 18, 1537-1548.	1.8	17
24	Degradation of ramipril by residues from the brewing industry: A new carbon-based photocatalyst compound. Chemosphere, 2021, 281, 130987.	4.2	16
25	Photocatalytic Efficiency of TiO2 Supported on Raw Red Clay Disks to Discolour Reactive Red 141. Water, Air, and Soil Pollution, 2018, 229, 1.	1.1	13
26	A Novel application of Cu2FeSnS4 particles prepared by solvothermal route as solar photo-Fenton catalyst. Materials Letters, 2018, 228, 160-163.	1.3	11
27	Optical and morphological properties of Ce-doped TiO2–MoO3 ceramic matrix. Ceramics International, 2012, 38, 847-850.	2.3	10
28	Doped and undoped anatase-based plates obtained from paper templates for photocatalytic oxidation of NO. Ceramics International, 2016, 42, 12074-12083.	2.3	10
29	Optical Properties of the MoO ₃ -TiO ₂ Particulate System and Its Use as a Ceramic Pigment. Particulate Science and Technology, 2013, 31, 466-473.	1.1	9
30	Preparation of Highly Efficient CoFe2O4/Zn2SnO4 Composite Photocatalyst for the Degradation of Rhodamine B Dye from Aqueous Solution. Water, Air, and Soil Pollution, 2018, 229, 1.	1.1	9
31	Effect of thermal treatment on the catalytic activity of a Fe-rich bentonite for the photo-Fenton reaction. Ceramica, 2019, 65, 147-152.	0.3	7
32	Biochar derived from yerba-mate (<i>Ilex paraguariensis)</i> as an alternative TiO ₂ support for enhancement of photocatalytic activity toward Rhodamine-B degradation in water. Chemical Engineering Communications, 2022, 209, 1334-1347.	1.5	7
33	Synthesis of biomorphic paper-derived anatase. Materials Letters, 2015, 141, 275-279.	1.3	6
34	Photocatalytic properties of Zn2SnO4 powders prepared by different modified hydrothermal routes. Research on Chemical Intermediates, 2019, 45, 4299-4313.	1.3	4
35	Toxicity of acrylamide after degradation by conjugated (UV/H2O2) photolysis in microalgae. Environmental Science and Pollution Research, 2021, 28, 38085-38093.	2.7	4
36	Sanitary sewage disinfection with ultraviolet radiation and ultrasound. International Journal of Environmental Science and Technology, 2022, 19, 11531-11538.	1.8	3

#	Article	IF	CITATIONS
37	Improved Photocatalytic Performance for Rhodamine B Degradation by Porous Zn2SnO4 Prepared with Carbon Black as a Pore-Forming Agent. Water, Air, and Soil Pollution, 2019, 230, 1.	1.1	2
38	PHOTOCATALYTIC EFFICIENCY OF TiO2 IN BIOTEMPLATES FORM IN THE DECOLORATION OF ORGANIC DYE AND INHIBITION OF E. COLI GROWTH. Journal of Advances in Chemistry, 2016, 12, 4247-4255.	0.1	2
39	TIO2 SUPORTADO EM VIDRO COMO FOTOCATALISADOR PARA DEGRADAÇÃO DE LARANJADO DE METILA. , 0 135-144.		O
40	DEGRADAÇÃ f O DE CORANTES ALIMENTÃCIOS UTILIZANDO LAFEO3 COMO CATALISADOR EM REAÇÃ f O FOTO-FENTON SOLAR. , 0, , 272-280.		0
41	Avaliação dos compósitos CuFe2O4/Biochar e ZnFe2O4/Biochar na degradação de rodamina B via processo foto-Fenton. , 2020, , .		0