Norio Takeshita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8457669/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Raman MicroÂspectroscopy and Imaging of Filamentous Fungi. Microbes and Environments, 2022, 37, n/a.	0.7	1
2	Deuterium-labeled Raman tracking of glucose accumulation and protein metabolic dynamics in Aspergillus nidulans hyphal tips. Scientific Reports, 2021, 11, 1279.	1.6	11
3	Trade-off between Plasticity and Velocity in Mycelial Growth. MBio, 2021, 12, .	1.8	16
4	Application of PALM Superresolution Microscopy to the Analysis of in Aspergillus nidulans. Methods in Molecular Biology, 2021, 2329, 277-289.	0.4	1
5	Fungal research in Japan: tradition and future. Fungal Biology and Biotechnology, 2020, 7, 14.	2.5	4
6	Invasive growth of Aspergillus oryzae in rice koji and increase of nuclear number. Fungal Biology and Biotechnology, 2020, 7, 8.	2.5	15
7	Fungal mycelia and bacterial thiamine establish a mutualistic growth mechanism. Life Science Alliance, 2020, 3, e202000878.	1.3	24
8	Inhomogeneous Molecular Distributions and Cytochrome Types and Redox States in Fungal Cells Revealed by Raman Hyperspectral Imaging Using Multivariate Curve Resolution–Alternating Least Squares. Analytical Chemistry, 2019, 91, 12501-12508.	3.2	20
9	Comparative genomics reveals the origin of fungal hyphae and multicellularity. Nature Communications, 2019, 10, 4080.	5.8	80
10	The Cytoskeleton and Polarity Markers During Polarized Growth of Filamentous Fungi. , 2019, , 43-62.		3
11	Control of Actin and Calcium for Chitin Synthase Delivery to the Hyphal Tip of Aspergillus. Current Topics in Microbiology and Immunology, 2019, 425, 113-129.	0.7	4
12	The spindle pole body of <i>Aspergillus nidulans</i> is asymmetrically composed with changing numbers of gamma-tubulin complexes. Journal of Cell Science, 2019, 132, .	1.2	13
13	Fungal Morphogenesis, from the Polarized Growth of Hyphae to Complex Reproduction and Infection Structures. Microbiology and Molecular Biology Reviews, 2018, 82, .	2.9	231
14	Superresolution and pulse-chase imaging reveal the role of vesicle transport in polar growth of fungal cells. Science Advances, 2018, 4, e1701798.	4.7	40
15	Oscillatory fungal cell growth. Fungal Genetics and Biology, 2018, 110, 10-14.	0.9	12
16	Spatial heterogeneity of glycogen and its metabolizing enzymes in Aspergillus nidulans hyphal tip cells. Fungal Genetics and Biology, 2018, 110, 48-55.	0.9	1
17	Pulses of Ca ²⁺ coordinate actin assembly and exocytosis for stepwise cell extension. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5701-5706.	3.3	74
18	Microtubuleâ€organizing centers of <i>Aspergillus nidulans</i> are anchored at septa by a disordered protein. Molecular Microbiology, 2017, 106, 285-303.	1.2	32

Norio Takeshita

#	Article	IF	CITATIONS
19	Dynamics of Actin Cables in Polarized Growth of the Filamentous Fungus Aspergillus nidulans. Frontiers in Microbiology, 2016, 7, 682.	1.5	36
20	Super Resolution Fluorescence Microscopy and Tracking of Bacterial Flotillin (Reggie) Paralogs Provide Evidence for Defined-Sized Protein Microdomains within the Bacterial Membrane but Absence of Clusters Containing Detergent-Resistant Proteins. PLoS Genetics, 2016, 12, e1006116.	1.5	44
21	Coordinated process of polarized growth in filamentous fungi. Bioscience, Biotechnology and Biochemistry, 2016, 80, 1693-1699.	0.6	52
22	Transportation of Aspergillus nidulans Class III and V Chitin Synthases to the Hyphal Tips Depends on Conventional Kinesin. PLoS ONE, 2015, 10, e0125937.	1.1	29
23	Superresolution microscopy reveals a dynamic picture of cell polarity maintenance during directional growth. Science Advances, 2015, 1, e1500947.	4.7	38
24	Functional Analysis of Sterol Transporter Orthologues in the Filamentous Fungus Aspergillus nidulans. Eukaryotic Cell, 2015, 14, 908-921.	3.4	13
25	Genetic evidence for a microtubule-capture mechanism during polar growth of <i>Aspergillus nidulans</i> . Journal of Cell Science, 2015, 128, 3569-82.	1.2	20
26	Live Cell Imaging of Endosomal Trafficking in Fungi. Methods in Molecular Biology, 2015, 1270, 347-363.	0.4	13
27	Fluorescence-Based Methods for the Study of Protein Localization, Interaction, and Dynamics in Filamentous Fungi. Fungal Biology, 2015, , 27-46.	0.3	1
28	Genetic evidence for a microtubule-capture mechanism during polarised growth of <i>Aspergillus nidulans</i> . Development (Cambridge), 2015, 142, e1.2-e1.2.	1.2	1
29	The Vip1 Inositol Polyphosphate Kinase Family Regulates Polarized Growth and Modulates the Microtubule Cytoskeleton in Fungi. PLoS Genetics, 2014, 10, e1004586.	1.5	47
30	F-Box Protein RcyA Controls Turnover of the Kinesin-7 Motor KipA in Aspergillus nidulans. Eukaryotic Cell, 2014, 13, 1085-1094.	3.4	5
31	Interdependence of the actin and the microtubule cytoskeleton during fungal growth. Current Opinion in Microbiology, 2014, 20, 34-41.	2.3	72
32	Time-Lapse Super-Resolution Imaging of Apical Membrane Protein Domains in Live Filamentous Fungi. Biophysical Journal, 2013, 104, 652a.	0.2	3
33	The cell end marker TeaA and the microtubule polymerase AlpA contribute to microtubule guidance at the hyphal tip cortex of <i>Aspergillus nidulans</i> for polarity maintenance. Journal of Cell Science, 2013, 126, 5400-11.	1.2	46
34	The role of flotillin FloA and stomatin StoA in the maintenance of apical sterolâ€rich membrane domains and polarity in the filamentous fungus <i>Aspergillus nidulans</i> . Molecular Microbiology, 2012, 83, 1136-1152.	1.2	35
35	On the role of microtubules, cell end markers, and septal microtubule organizing centres on site selection for polar growth in Aspergillus nidulans. Fungal Biology, 2011, 115, 506-517.	1.1	35
36	The <i>Aspergillus nidulans</i> CENPâ€E kinesin motor KipA interacts with the fungal homologue of the centromereâ€associated protein CENPâ€H at the kinetochore. Molecular Microbiology, 2011, 80, 981-994.	1.2	21

NORIO TAKESHITA

#	Article	IF	CITATIONS
37	Screening for Antifungal Peptides and Their Modes of Action in <i>Aspergillus nidulans</i> . Applied and Environmental Microbiology, 2010, 76, 7102-7108.	1.4	52
38	The Cell End Marker Protein TeaC Is Involved in Growth Directionality and Septation in <i>Aspergillus nidulans</i> . Eukaryotic Cell, 2009, 8, 957-967.	3.4	43
39	Morphology and development in Aspergillus nidulans: A complex puzzle. Fungal Genetics and Biology, 2009, 46, S82-S92.	0.9	49
40	The 2008 update of the Aspergillus nidulans genome annotation: A community effort. Fungal Genetics and Biology, 2009, 46, S2-S13.	0.9	99
41	Myosin Motor-Like Domain of the Class VI Chitin Synthase CsmB Is Essential to Its Functions in <i>Aspergillus nidulans</i> . Bioscience, Biotechnology and Biochemistry, 2009, 73, 1163-1167.	0.6	33
42	Polarized growth in fungi – interplay between the cytoskeleton, positional markers and membrane domains. Molecular Microbiology, 2008, 68, 813-826.	1.2	180
43	Apical Sterol-rich Membranes Are Essential for Localizing Cell End Markers That Determine Growth Directionality in the Filamentous Fungus <i>Aspergillus nidulans</i> . Molecular Biology of the Cell, 2008, 19, 339-351.	0.9	145
44	The Aspergillus nidulans putative kinase, KfsA (kinase for septation), plays a role in septation and is required for efficient asexual spore formation. Fungal Genetics and Biology, 2007, 44, 1205-1214.	0.9	14
45	Aspergillus nidulansclass V and VI chitin synthases CsmA and CsmB, each with a myosin motor-like domain, perform compensatory functions that are essential for hyphal tip growth. Molecular Microbiology, 2006, 59, 1380-1394.	1.2	119
46	CsmA, a Class V Chitin Synthase with a Myosin Motor-like Domain, Is Localized through Direct Interaction with the Actin Cytoskeleton inAspergillus nidulans. Molecular Biology of the Cell, 2005, 16, 1961-1970.	0.9	106
47	csmA, a gene encoding a class V chitin synthase with a myosin motor-like domain of Aspergillus nidulans, is translated as a single polypeptide and regulated in response to osmotic conditions. Biochemical and Biophysical Research Communications, 2002, 298, 103-109.	1.0	45