Janet M Newman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8457577/publications.pdf

Version: 2024-02-01

126907 149698 3,688 127 33 56 citations g-index h-index papers 130 130 130 5120 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mechanism and inhibition of the papainâ€like protease, PLpro, of SARSâ€CoVâ€2. EMBO Journal, 2020, 39, e106275.	7.8	330
2	Towards rationalization of crystallization screening for small- to medium-sized academic laboratories: the PACT/JCSG+ strategy. Acta Crystallographica Section D: Biological Crystallography, 2005, 61, 1426-1431.	2.5	228
3	Structural analysis of a set of proteins resulting from a bacterial genomics project. Proteins: Structure, Function and Bioinformatics, 2005, 60, 787-796.	2.6	217
4	Haloalkane Dehalogenases: Structure of aRhodococcusEnzymeâ€,‡. Biochemistry, 1999, 38, 16105-16114.	2.5	150
5	Identification and characterization of two families of F ₄₂₀ H ₂ â€dependent reductases from <i>Mycobacteria</i> that catalyse aflatoxin degradation. Molecular Microbiology, 2010, 78, 561-575.	2.5	132
6	Crystal Structure of the Haloalkane Dehalogenase fromSphingomonas paucimobilisUT26â€,‡. Biochemistry, 2000, 39, 14082-14086.	2.5	118
7	Novel buffer systems for macromolecular crystallization. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 610-612.	2.5	111
8	Structure of translation initiation factor 5A from Pyrobaculum aerophilum at 1.75 \tilde{A} ¥ resolution. Structure, 1998, 6, 1207-1214.	3.3	109
9	Classâ€directed structure determination: Foundation for a protein structure initiative. Protein Science, 1998, 7, 1851-1856.	7.6	89
10	Rational engineering of a mesohalophilic carbonic anhydrase to an extreme halotolerant biocatalyst. Nature Communications, 2015, 6, 10278.	12.8	80
11	Structural and Functional Basis of Resistance to Neuraminidase Inhibitors of Influenza B Viruses. Journal of Medicinal Chemistry, 2010, 53, 6421-6431.	6.4	75
12	Structural Studies of Salmonella typhimurium ArnB (PmrH) Aminotransferase. Structure, 2002, 10, 1569-1580.	3.3	73
13	Crystal Structure of an Indole-3-Acetic Acid Amido Synthetase from Grapevine Involved in Auxin Homeostasis. Plant Cell, 2012, 24, 4525-4538.	6.6	70
14	High-Throughput Thermal Scanning for Protein Stability: Making a Good Technique More Robust. ACS Combinatorial Science, 2013, 15, 387-392.	3.8	62
15	Parallel Screening of Low Molecular Weight Fragment Libraries: Do Differences in Methodology Affect Hit Identification?. Journal of Biomolecular Screening, 2013, 18, 147-159.	2.6	61
16	Crystallization screening: the influence of history on current practice. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 835-853.	0.8	54
17	Classification of crystallization outcomes using deep convolutional neural networks. PLoS ONE, 2018, 13, e0198883.	2.5	54
18	Improved Success of Sparse Matrix Protein Crystallization Screening with Heterogeneous Nucleating Agents. PLoS ONE, 2007, 2, e1091.	2.5	49

#	Article	IF	CITATIONS
19	Structural Basis for a New Mechanism of Inhibition of H I V-1 Integrase Identified by Fragment Screening and Structure-Based Design. Antiviral Chemistry and Chemotherapy, 2011, 21, 155-168.	0.6	49
20	Small Molecule Inhibitors of the LEDGF Site of Human Immunodeficiency Virus Integrase Identified by Fragment Screening and Structure Based Design. PLoS ONE, 2012, 7, e40147.	2.5	49
21	Evaluating Protic Ionic Liquids as Protein Crystallization Additives. Crystal Growth and Design, 2011, 11, 1777-1785.	3.0	46
22	Structure of an effector-induced inactivated state of ribulose 1,5-bisphosphate carboxylase/oxygenase: the binary complex between enzyme and xylulose 1,5-bisphosphate. Structure, 1994, 2, 495-502.	3.3	44
23	Meltdown: A Tool to Help in the Interpretation of Thermal Melt Curves Acquired by Differential Scanning Fluorimetry. Journal of Biomolecular Screening, 2015, 20, 898-905.	2.6	44
24	A review of techniques for maximizing diffraction from a protein crystalin stilla. Acta Crystallographica Section D: Biological Crystallography, 2006, 62, 27-31.	2.5	42
25	High-Throughput Production and Structural Characterization of Libraries of Self-Assembly Lipidic Cubic Phase Materials. ACS Combinatorial Science, 2012, 14, 247-252.	3.8	42
26	A Human Monoclonal Antibody against Insulin-Like Growth Factor-II Blocks the Growth of Human Hepatocellular Carcinoma Cell Lines <i>In vitro</i> and <i>In vivo</i> . Molecular Cancer Therapeutics, 2010, 9, 1809-1819.	4.1	39
27	The C6 Web Tool: A Resource for the Rational Selection of Crystallization Conditions. Crystal Growth and Design, 2010, 10, 2785-2792.	3.0	39
28	On the need for an international effort to capture, share and use crystallization screening data. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 253-258.	0.7	38
29	A drunken search in crystallization space. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 1303-1311.	0.8	38
30	The structure of vanin 1: a key enzyme linking metabolic disease and inflammation. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 3320-3329.	2.5	37
31	Initial evaluations of the reproducibility of vapor-diffusion crystallization. Acta Crystallographica Section D: Biological Crystallography, 2007, 63, 826-832.	2.5	36
32	Parallel and antiparallel cyclic <scp>d</scp> / <scp>l</scp> peptide nanotubes. Chemical Communications, 2017, 53, 6613-6616.	4.1	36
33	Reverse engineering: transaminase biocatalyst development using ancestral sequence reconstruction. Green Chemistry, 2017, 19, 5375-5380.	9.0	36
34	Expanding screening space through the use of alternative reservoirs in vapor-diffusion experiments. Acta Crystallographica Section D: Biological Crystallography, 2005, 61, 490-493.	2.5	34
35	Some practical guidelines for UV imaging in the protein crystallization laboratory. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 201-208.	0.7	32
36	Phoenito experiments: combining the strengths of commercial crystallization automation. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 991-996.	0.7	31

#	Article	IF	CITATIONS
37	Cyanuric acid hydrolase: evolutionary innovation by structural concatenation. Molecular Microbiology, 2013, 88, 1149-1163.	2.5	31
38	Crystal Structures of Novel Allosteric Peptide Inhibitors of HIV Integrase Identify New Interactions at the LEDGF Binding Site. ChemBioChem, 2011, 12, 2311-2315.	2.6	30
39	The nanoscience behind the art of in-meso crystallization of membrane proteins. Nanoscale, 2017, 9, 754-763.	5.6	30
40	Tapping the Protein Data Bank for crystallization information. Acta Crystallographica Section D: Biological Crystallography, 2005, 61, 1662-1669.	2.5	29
41	Structural basis for ligand recognition by a Cache chemosensory domain that mediates carboxylate sensing in Pseudomonas syringae. Scientific Reports, 2016, 6, 35198.	3.3	28
42	One plate, two plates, a thousand plates. How crystallisation changes with large numbers of samples. Methods, 2011, 55, 73-80.	3.8	26
43	Germline humanization of a murine ${\sf A}\hat{\sf I}^2$ antibody and crystal structure of the humanized recombinant Fab fragment. Protein Science, 2010, 19, 299-308.	7.6	25
44	Interrogating HIV integrase for compounds that bind- a SAMPL challenge. Journal of Computer-Aided Molecular Design, 2014, 28, 347-362.	2.9	25
45	Structure of S. aureus HPPK and the Discovery of a New Substrate Site Inhibitor. PLoS ONE, 2012, 7, e29444.	2.5	24
46	Crystal structures of human ENPP1 in apo and bound forms. Acta Crystallographica Section D: Structural Biology, 2020, 76, 889-898.	2.3	24
47	Identifying, studying and making good use of macromolecular crystals. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 993-1008.	0.8	23
48	A Î ² -Alanine Catabolism Pathway Containing a Highly Promiscuous ï‰-Transaminase in the 12-Aminododecanate-Degrading Pseudomonas sp. Strain AAC. Applied and Environmental Microbiology, 2016, 82, 3846-3856.	3.1	21
49	Transmembrane Complexes of DAP12 Crystallized in Lipid Membranes Provide Insights into Control of Oligomerization in Immunoreceptor Assembly. Cell Reports, 2015, 11, 1184-1192.	6.4	20
50	The DINGO dataset: a comprehensive set of data for the SAMPL challenge. Journal of Computer-Aided Molecular Design, 2012, 26, 497-503.	2.9	19
51	The structure of the hexameric atrazine chlorohydrolase AtzA. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 710-720.	2.5	19
52	X-Ray Structure of the Amidase Domain of AtzF, the Allophanate Hydrolase from the Cyanuric Acid-Mineralizing Multienzyme Complex. Applied and Environmental Microbiology, 2015, 81, 470-480.	3.1	18
53	An unexpected vestigial protein complex reveals the evolutionary origins of an s-triazine catabolic enzyme. Journal of Biological Chemistry, 2018, 293, 7880-7891.	3.4	18
54	Practical Aspects of the SAMPL Challenge: Providing an Extensive Experimental Data Set for the Modeling Community. Journal of Biomolecular Screening, 2009, 14, 1245-1250.	2.6	17

#	Article	IF	Citations
55	Determination of the Structure of the Catabolic N-Succinylornithine Transaminase (AstC) from Escherichia coli. PLoS ONE, 2013, 8, e58298.	2.5	17
56	Exploring the Chemical Space around 8-Mercaptoguanine as a Route to New Inhibitors of the Folate Biosynthesis Enzyme HPPK. PLoS ONE, 2013, 8, e59535.	2.5	17
57	Design of a methotrexate-controlled chemical dimerization system and its use in bio-electronic devices. Nature Communications, 2021, 12, 7137.	12.8	17
58	Redetermination of the crystal structure of hexaamminecobalt(II) chloride. Inorganic Chemistry, 1991, 30, 3499-3502.	4.0	16
59	A new crystal form of human vascular adhesion protein 1. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1572-1578.	0.7	16
60	Formulation screening by differential scanning fluorimetry: how often does it work?. Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 1359-1364.	0.8	16
61	Some of the most interesting $\langle scp \rangle CASP \langle scp \rangle 11$ targets through the eyes of their authors. Proteins: Structure, Function and Bioinformatics, 2016, 84, 34-50.	2.6	16
62	Lipidic Cubic Phase-Induced Membrane Protein Crystallization: Interplay Between Lipid Molecular Structure, Mesophase Structure and Properties, and Crystallogenesis. Crystal Growth and Design, 2017, 17, 5667-5674.	3.0	16
63	Using Time Courses To Enrich the Information Obtained from Images of Crystallization Trials. Crystal Growth and Design, 2014, 14, 261-269.	3.0	15
64	The purification, crystallization and preliminary X-ray diffraction analysis of dihydrodipicolinate synthase from <i>Clostridium botulinum </i> . Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 206-208.	0.7	14
65	Crystallization and preliminary X-ray analysis of dihydrodipicolinate synthase from <i>Clostridium botulinum < /i>i>in the presence of its substrate pyruvate. Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 253-255.</i>	0.7	14
66	Structure-Based Design and Development of Functionalized Mercaptoguanine Derivatives as Inhibitors of the Folate Biosynthesis Pathway Enzyme 6-Hydroxymethyl-7,8-dihydropterin Pyrophosphokinase from <i>Staphylococcus aureus</i> . Journal of Medicinal Chemistry, 2014, 57, 9612-9626.	6.4	14
67	300-Fold Increase in Production of the Zn2+-Dependent Dechlorinase TrzN in Soluble Form via Apoenzyme Stabilization. Applied and Environmental Microbiology, 2014, 80, 4003-4011.	3.1	14
68	A universal indicator dye pH assay for crystallization solutions and other high-throughput applications. Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 1003-1009.	2.5	13
69	Structural and biochemical characterization of the biuret hydrolase (BiuH) from the cyanuric acid catabolism pathway of Rhizobium leguminasorum bv. viciae 3841. PLoS ONE, 2018, 13, e0192736.	2.5	12
70	<i>BLAST</i> ing away preconceptions in crystallization trials. Acta Crystallographica Section F, Structural Biology Communications, 2019, 75, 184-192.	0.8	12
71	Cloning, expression, purification and crystallization of dihydrodipicolinate synthase from the grapevine Vitis vinifera. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 1537-1541.	0.7	11
72	Crystallization reports are the backbone of <i> Acta Cryst. F < /i >, but do they have any spine?. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 712-718.</i>	0.7	11

#	Article	IF	CITATIONS
73	A novel decarboxylating amidohydrolase involved in avoiding metabolic dead ends during cyanuric acid catabolism in Pseudomonas sp. strain ADP. PLoS ONE, 2018, 13, e0206949.	2.5	11
74	Insights Into Drug Repurposing, as Well as Specificity and Compound Properties of Piperidine-Based SARS-CoV-2 PLpro Inhibitors. Frontiers in Chemistry, 2022, 10, 861209.	3.6	11
75	DropllT, an improved image analysis method for droplet identification in high-throughput crystallization trials. Journal of Applied Crystallography, 2010, 43, 1548-1552.	4.5	10
76	What's in a Name? Moving Towards a Limited Vocabulary for Macromolecular Crystallisation. Australian Journal of Chemistry, 2014, 67, 1813.	0.9	10
77	Structural characterization of a novel monotreme-specific protein with antimicrobial activity from the milk of the platypus. Acta Crystallographica Section F, Structural Biology Communications, 2018, 74, 39-45.	0.8	10
78	Bacterial catabolism of s-triazine herbicides: biochemistry, evolution and application. Advances in Microbial Physiology, 2020, 76, 129-186.	2.4	10
79	Findable Accessible Interoperable Re-usable (FAIR) diffraction data are coming to protein crystallography. Acta Crystallographica Section D: Structural Biology, 2019, 75, 455-457.	2.3	10
80	The crystal structures of Rubisco and opportunities for manipulating photosynthesis. Journal of Experimental Botany, 1995, 46, 1261-1267.	4.8	8
81	Crystallization and preliminary X-ray diffraction analysis of the amidase domain of allophanate hydrolase from <i>Pseudomonas</i> sp. strain ADP. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 310-315.	0.8	8
82	Findable Accessible Interoperable Re-usable (FAIR) diffraction data are coming to protein crystallography. IUCrJ, 2019, 6, 341-343.	2.2	8
83	<i>Cinder $\langle l \rangle$: keeping crystallographers app-y. Acta Crystallographica Section F, Structural Biology Communications, 2018, 74, 410-418.</i>	0.8	7
84	Tools to Ease the Choice and Design of Protein Crystallisation Experiments. Crystals, 2020, 10, 95.	2.2	7
85	Structures of the transcriptional regulator BgaR, a lactose sensor. Acta Crystallographica Section D: Structural Biology, 2019, 75, 639-646.	2.3	7
86	Fragment Screening for the Modelling Community: SPR, ITC, and Crystallography. Australian Journal of Chemistry, 2013, 66, 1507.	0.9	6
87	High-Resolution X-Ray Structures of Two Functionally Distinct Members of the Cyclic Amide Hydrolase Family of Toblerone Fold Enzymes. Applied and Environmental Microbiology, 2017, 83, .	3.1	6
88	Fragment screening for a protein-protein interaction inhibitor to WDR5. Structural Dynamics, 2019, 6, 064701.	2.3	6
89	Crystal structure of fungal tannase from <i>Aspergillus niger</i> . Acta Crystallographica Section D: Structural Biology, 2021, 77, 267-277.	2.3	6
90	A Nondenaturing Purification Scheme for the DNA-Binding Domain of Poly(ADP-Ribose) Polymerase, a Structure-Specific DNA-Binding Protein. Protein Expression and Purification, 1998, 14, 79-86.	1.3	5

#	Article	IF	CITATIONS
91	From information management to protein annotation: preparing protein structures for drug discovery. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 1968-1970.	2.5	5
92	Crystallization and preliminary X-ray analysis of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase from <i>Staphylococcus aureus </i> Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 575-578.	0.7	5
93	13th International Conference on the Crystallization of Biological Macromolecules (ICCBM13) Proceedings Overview. Crystal Growth and Design, 2012, 12, 3-7.	3.0	5
94	X-Ray Structure and Mutagenesis Studies of the N-Isopropylammelide Isopropylaminohydrolase, AtzC. PLoS ONE, 2015, 10, e0137700.	2.5	5
95	Crystallization of an apo form of human arginase: using all the tools in the toolbox simultaneously. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 90-93.	0.7	4
96	Crystallization: Digging into the Past to Learn Lessons for the Future. Methods in Molecular Biology, 2015, 1261, 141-156.	0.9	4
97	Crystal structure of a putrescine aminotransferase fromPseudomonassp. strain AAC. Acta Crystallographica Section F, Structural Biology Communications, 2017, 73, 29-35.	0.8	3
98	Predicting the Effect of Chemical Factors on the pH of Crystallization Trials. IScience, 2020, 23, 101219.	4.1	3
99	Findable Accessible Interoperable Re-usable (FAIR) diffraction data are coming to protein crystallography. Acta Crystallographica Section F, Structural Biology Communications, 2019, 75, 321-323.	0.8	3
100	Data- and diversity-driven development of a Shotgun crystallization screen using the Protein Data Bank. Acta Crystallographica Section D: Structural Biology, 2021, 77, 1437-1450.	2.3	3
101	The X-ray crystal structure of the N-terminal domain of Ssr4, a <i>Schizosaccharomyces pombe</i> chromatin-remodelling protein. Acta Crystallographica Section F, Structural Biology Communications, 2020, 76, 583-589.	0.8	3
102	Submission of structural biology data for review purposes. IUCrJ, 2022, 9, 1-2.	2.2	3
103	Using Graphs to Represent Crystallization Conditions. Crystal Growth and Design, 2013, 13, 1290-1294.	3.0	2
104	Nitrate in the active site of protein tyrosine phosphatase 1B is a putative mimetic of the transition state. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 565-571.	2.5	2
105	Structural and functional characterisation of ferret interleukin-2. Developmental and Comparative Immunology, 2016, 55, 32-38.	2.3	2
106	X-ray crystal structure of a malonate-semialdehyde dehydrogenase fromPseudomonassp. strain AAC. Acta Crystallographica Section F, Structural Biology Communications, 2017, 73, 24-28.	0.8	2
107	Structure-guided selection of puromycin N-acetyltransferase mutants with enhanced selection stringency for deriving mammalian cell lines expressing recombinant proteins. Scientific Reports, 2021, 11, 5247.	3.3	2
108	Increasing Protein Crystallization Screening Success with Heterogeneous Nucleating Agents. Methods in Molecular Biology, 2008, 426, 403-409.	0.9	2

#	Article	IF	CITATIONS
109	A Crystal/Clear Pipeline for Applied Image Processing. Lecture Notes in Computer Science, 2019, , 19-37.	1.3	2
110	Over the rainbow: structural characterization of the chromoproteins gfasPurple, amilCP, spisPink and eforRed. Acta Crystallographica Section D: Structural Biology, 2022, 78, 599-612.	2.3	2
111	Crystallization and preliminary X-ray analysis of the complexes between a Fab and two forms of human insulin-like growth factor II. Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 945-948.	0.7	1
112	Classification of protein crystallisation images using texture-based statistical features., 2013,,.		1
113	Understanding the control of grape berry ripening and developing opportunities for its manipulation. Acta Horticulturae, 2017, , 1-10.	0.2	1
114	Organizing a crystallization laboratory. Journal of Applied Crystallography, 2018, 51, 47-54.	4.5	1
115	Findable Accessible Interoperable Re-usable (FAIR) diffraction data are coming to protein crystallography. Journal of Applied Crystallography, 2019, 52, 495-497.	4.5	1
116	The evolving story of AtzT, a periplasmic binding protein. Acta Crystallographica Section D: Structural Biology, 2019, 75, 995-1002.	2.3	1
117	Quantifying the quality of the experiments used to grow protein crystals: theiQCsuite. Journal of Applied Crystallography, 2014, 47, 1097-1106.	4.5	1
118	Submission of structural biology data for review purposes. Acta Crystallographica Section D: Structural Biology, 2021, 77, 1477-1478.	2.3	1
119	An Observation about Circular Shortest Paths: Dealing with Additional Constraints Using Branch and Bound. , $2011, , .$		0
120	Multi-view Learning for Classification of X-Ray Crystallography Images. Lecture Notes in Computer Science, 2016, , 446-458.	1.3	0
121	Introducing Methods Communications, a new category of contributions to Acta Crystallographica F. Acta Crystallographica Section F, Structural Biology Communications, 2019, 75, 529-530.	0.8	0
122	Taking biological structure communications into the third dimension. Acta Crystallographica Section F, Structural Biology Communications, 2019, 75, 663-664.	0.8	0
123	Innovation versus practice in biological crystallization. Acta Crystallographica Section F, Structural Biology Communications, 2020, 76, 290-291.	0.8	0
124	Contamination or serendipity $\hat{a} \in ``doing the wrong thing by chance. Acta Crystallographica Section F, Structural Biology Communications, 2020, 76, 391-391.$	0.8	0
125	Topical Reviews in <i>Acta Crystallographica F Structural Biology Communications</i> Crystallographica Section F, Structural Biology Communications, 2021, 77, 385-385.	0.8	0
126	Predicting the Effect of Chemical Factors on the pH of Crystallisation Trials. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
127	Submission of structural biology data for review purposes. Acta Crystallographica Section F, Structural Biology Communications, 2021, 77, 435-436.	0.8	0