
Ying Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8457334/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly active <scp>Mg</scp> – <scp>Al</scp> hydrotalcite for efficient <scp><i>O</i></scp> â€methylation of phenol with <scp>DMC</scp> based on soft colloidal templates. Journal of Chemical Technology and Biotechnology, 2022, 97, 79-86.	3.2	6
2	Synthesis of efficient CaO based on biotemplate for the application of no-glycerol biodiesel preparation. Inorganic and Nano-Metal Chemistry, 2022, 52, 1030-1040.	1.6	1
3	Enhanced transesterification of rapeseed oil to biodiesel catalyzed by KCl/CaO. Comptes Rendus Chimie, 2022, 25, 145-153.	0.5	1
4	Heterogeneous degradation of oil field additives by Cu (II) complexâ€activated persulfate oxidation. Environmental Progress and Sustainable Energy, 2021, 40, e13562.	2.3	8
5	Enhanced Removal of Sulfonated Lignite from Oil Wastewater with Multidimensional MgAl-LDH Nanoparticles. Nanomaterials, 2021, 11, 861.	4.1	30
6	Efficient noâ€glycerol biodiesel production using a novel biotemplated hierarchical porousâ€structure CaO(O). Journal of Chemical Technology and Biotechnology, 2020, 95, 1467-1475.	3.2	3
7	Triâ€component coupling transesterification for efficient noâ€glycerol biodiesel production using methyl acetate as methyl reagent. Journal of Chemical Technology and Biotechnology, 2020, 95, 1234.	3.2	3
8	A comprehensive experimental of degradation of pollutants in oil fields by sodium persulfate. IOP Conference Series: Earth and Environmental Science, 2020, 450, 012054.	0.3	0
9	Design of a comprehensive experiment of the synthesis of biodiesel catalyzed by CaO. IOP Conference Series: Earth and Environmental Science, 2020, 450, 012055.	0.3	0
10	Synthesis of hierarchical MgO based on a cotton template and its adsorption properties for efficient treatment of oilfield wastewater. RSC Advances, 2020, 10, 28695-28704.	3.6	8
11	Degradation of hydroxypropyl guar gum at wide pH range by a heterogeneous Fenton-like process using bentonite-supported Cu(0). Water Science and Technology, 2020, 82, 1635-1642.	2.5	9
12	Treatment of fracturing fluid waste by FentonÂreactionÂusingÂtransition metal complexes catalyzes oxidation of hydroxypropyl guar gum atÂhigh pH. Environmental Chemistry Letters, 2019, 17, 559-564.	16.2	31
13	Heterogeneous synthesis of glycerol carbonate from glycerol and dimethyl carbonate catalyzed by LiCl/CaO. Journal of Saudi Chemical Society, 2019, 23, 494-502.	5.2	27
14	Development KCl/CaO as a catalyst for biodiesel production by triâ€component coupling transesterification. Environmental Progress and Sustainable Energy, 2019, 38, 647-653.	2.3	21
15	An Efficient CaOâ€Based Catalyst for Rapid Production of Biodiesel without Glycerol as a byâ€Product Using a Tri omponent Reaction. JAOCS, Journal of the American Oil Chemists' Society, 2018, 95, 1487-1496.	1.9	6
16	Development of a trapezoidal MgO catalyst for highly-efficient transesterification of glycerol and dimethyl carbonate. CrystEngComm, 2018, 20, 4090-4098.	2.6	21
17	Nano KF/Al ₂ O ₃ particles as an efficient catalyst for no-glycerol biodiesel production by coupling transesterification. RSC Advances, 2017, 7, 5694-5700.	3.6	28
18	Synthesis of noâ€glycerol biodiesel through transesterification catalyzed by CaO from different precursors. Canadian Journal of Chemical Engineering, 2016, 94, 1466-1471.	1.7	13

#	Article	IF	CITATIONS
19	Coupling transesterifications for no-glycerol biodiesel production catalyzed by calcium oxide. Comptes Rendus Chimie, 2015, 18, 1328-1334.	0.5	19
20	Biodiesel production from vegetable oil by using modified CaO as solid basic catalysts. Journal of Cleaner Production, 2013, 42, 198-203.	9.3	98