Agnieszka KuÅ^oniar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/845694/publications.pdf

Version: 2024-02-01

		623188	580395
30	684	14	25
papers	citations	h-index	g-index
30	30	30	855
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Bacteroidetes as a sensitive biological indicator of agricultural soil usage revealed by a culture-independent approach. Applied Soil Ecology, 2017, 119, 128-137.	2.1	154
2	Culture-independent analysis of an endophytic core microbiome in two species of wheat: Triticum aestivum L. (cv. †Hondia†M) and the first report of microbiota in Triticum spelta L. (cv. †Rokosz†M). Systematic and Applied Microbiology, 2020, 43, 126025.	1.2	65
3	Metagenomic Analysis of Some Potential Nitrogen-Fixing Bacteria in Arable Soils at Different Formation Processes. Microbial Ecology, 2017, 73, 162-176.	1.4	45
4	Indicators of arable soils fatigue – Bacterial families and genera: A metagenomic approach. Ecological Indicators, 2018, 93, 490-500.	2.6	44
5	New Insight into the Composition of Wheat Seed Microbiota. International Journal of Molecular Sciences, 2020, 21, 4634.	1.8	39
6	Biological Activity of Autochthonic Bacterial Community in Oil-Contaminated Soil. Water, Air, and Soil Pollution, 2016, 227, 130.	1.1	38
7	Microbial biodiversity in arable soils is affected by agricultural practices. International Agrophysics, 2017, 31, 259-271.	0.7	31
8	Agricultural and Other Biotechnological Applications Resulting from Trophic Plant-Endophyte Interactions. Agronomy, 2019, 9, 779.	1.3	30
9	Technogenic soils (Technosols) developed from mine spoils containing Fe sulphides: Microbiological activity as an indicator of soil development following land reclamation. Applied Soil Ecology, 2020, 156, 103699.	2.1	29
10	Community-level physiological profiles of microorganisms inhabiting soil contaminated with heavy metals. International Agrophysics, 2018, 32, 101-109.	0.7	24
11	Azolla filiculoides L. as a source of metal-tolerantÂmicroorganisms. PLoS ONE, 2020, 15, e0232699.	1.1	24
12	Biodiversity in the Rhizosphere of Selected Winter Wheat (Triticum aestivum L.) Cultivars—Genetic and Catabolic Fingerprinting. Agronomy, 2020, 10, 953.	1.3	19
13	Catabolic Fingerprinting and Diversity of Bacteria in Mollic Gleysol Contaminated with Petroleum Substances. Applied Sciences (Switzerland), 2018, 8, 1970.	1.3	18
14	Actinobacteria Structure in Autogenic, Hydrogenic and Lithogenic Cultivated and Non-Cultivated Soils: A Culture-Independent Approach. Agronomy, 2019, 9, 598.	1.3	17
15	Methanotrophic Bacterial Biomass as Potential Mineral Feed Ingredients for Animals. International Journal of Environmental Research and Public Health, 2019, 16, 2674.	1.2	14
16	Enrichment culture and identification of endophytic methanotrophs isolated from peatland plants. Folia Microbiologica, 2017, 62, 381-391.	1.1	13
17	Soil Microbial Community Profiling and Bacterial Metabolic Activity of Technosols as an Effect of Soil Properties following Land Reclamation: A Case Study from the Abandoned Iron Sulphide and Uranium Mine in Rudki (South-Central Poland). Agronomy, 2020, 10, 1795.	1.3	13
18	The Study on the Cultivable Microbiome of the Aquatic Fern Azolla Filiculoides L. as New Source of Beneficial Microorganisms. Applied Sciences (Switzerland), 2019, 9, 2143.	1.3	11

#	Article	IF	CITATIONS
19	Bacterial Endophytes of Spring Wheat Grains and the Potential to Acquire Fe, Cu, and Zn under Their Low Soil Bioavailability. Biology, 2021, 10, 409.	1.3	11
20	Does the Use of an Intercropping Mixture Really Improve the Biology of Monocultural Soils?—A Search for Bacterial Indicators of Sensitivity and Resistance to Long-Term Maize Monoculture. Agronomy, 2022, 12, 613.	1.3	11
21	Fungal Indicators of Sensitivity and Resistance to Long-Term Maize Monoculture: A Culture-Independent Approach. Frontiers in Microbiology, 2021, 12, 799378.	1.5	10
22	Cultivation and detection of endophytic aerobic methanotrophs isolated from Sphagnum species as a perspective for environmental biotechnology. AMB Express, 2014, 4, 58.	1.4	7
23	Changes in the Substrate Source Reveal Novel Interactions in the Sediment-Derived Methanogenic Microbial Community. International Journal of Molecular Sciences, 2019, 20, 4415.	1.8	7
24	A Comprehensive Analysis Using Colorimetry, Liquid Chromatography-Tandem Mass Spectrometry and Bioassays for the Assessment of Indole Related Compounds Produced by Endophytes of Selected Wheat Cultivars. Molecules, 2021, 26, 1394.	1.7	6
25	Functional and Seasonal Changes in the Structure of Microbiome Inhabiting Bottom Sediments of a Pond Intended for Ecological King Carp Farming. Biology, 2022, 11, 913.	1.3	4
26	Phenotype Switching in Metal-Tolerant Bacteria Isolated from a Hyperaccumulator Plant. Biology, 2021, 10, 879.	1.3	0
27	Azolla filiculoides L. as a source of metal-tolerant microorganisms. , 2020, 15, e0232699.		O
28	Azolla filiculoides L. as a source of metal-tolerant microorganisms. , 2020, 15, e0232699.		0
29	Azolla filiculoides L. as a source of metal-tolerant microorganisms. , 2020, 15, e0232699.		0
30	Azolla filiculoides L. as a source of metal-tolerant microorganisms. , 2020, 15, e0232699.		0