Ryan K Dale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8456682/publications.pdf

Version: 2024-02-01

32 papers 3,820 citations

430874 18 h-index 31 g-index

41 all docs

41 docs citations

41 times ranked

7895 citing authors

#	Article	IF	Citations
1	A compendium of RNA-binding motifs for decoding gene regulation. Nature, 2013, 499, 172-177.	27.8	1,281
2	Bioconda: sustainable and comprehensive software distribution for the life sciences. Nature Methods, 2018, 15, 475-476.	19.0	714
3	Pybedtools: a flexible Python library for manipulating genomic datasets and annotations. Bioinformatics, 2011, 27, 3423-3424.	4.1	402
4	Cell type specificity of chromatin organization mediated by CTCF and cohesin. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3651-3656.	7.1	244
5	Sex- and Tissue-Specific Functions of Drosophila Doublesex Transcription Factor Target Genes. Developmental Cell, 2014, 31, 761-773.	7.0	122
6	RNAi-independent role for Argonaute2 in CTCF/CP190 chromatin insulator function. Genes and Development, 2011, 25, 1686-1701.	5.9	110
7	Practical Computational Reproducibility in the Life Sciences. Cell Systems, 2018, 6, 631-635.	6.2	100
8	Mediation of Drosophila autosomal dosage effects and compensation by network interactions. Genome Biology, 2012, 13, R28.	9.6	98
9	Role of LDB1 in the transition from chromatin looping to transcription activation. Genes and Development, 2014, 28, 1278-1290.	5.9	97
10	Ldb1-nucleated transcription complexes function as primary mediators of global erythroid gene activation. Blood, 2013, 121, 4575-4585.	1.4	78
11	The LDB1 Complex Co-opts CTCF for Erythroid Lineage-Specific Long-Range Enhancer Interactions. Cell Reports, 2017, 19, 2490-2502.	6.4	66
12	Regulatory roles of Escherichia coli 5' UTR and ORF-internal RNAs detected by 3' end mapping. ELife, 2021, 10, .	6.0	60
13	Spatial and temporal patterns of salinity and temperature at an intertidal groundwater seep. Estuarine, Coastal and Shelf Science, 2007, 72, 283-298.	2.1	47
14	Tissue-Specific Regulation of Chromatin Insulator Function. PLoS Genetics, 2012, 8, e1003069.	3.5	47
15	Distinct Ldb1/NLI complexes orchestrate \hat{l}^3 -globin repression and reactivation through ETO2 in human adult erythroid cells. Blood, 2011, 118, 6200-6208.	1.4	42
16	Genome-wide localization of exosome components to active promoters and chromatin insulators in Drosophila. Nucleic Acids Research, 2013, 41, 2963-2980.	14.5	42
17	CTCF-mediated transcriptional regulation through cell type-specific chromosome organization in the \hat{l}^2 -globin locus. Nucleic Acids Research, 2012, 40, 7718-7727.	14.5	37
18	metaseq: a Python package for integrative genome-wide analysis reveals relationships between chromatin insulators and associated nuclear mRNA. Nucleic Acids Research, 2014, 42, 9158-9170.	14.5	26

#	Article	IF	CITATIONS
19	The zinc-finger protein CLAMP promotes gypsy chromatin insulator function in Drosophila. Journal of Cell Science, 2019, 132, .	2.0	24
20	The RNA-binding protein Rumpelstiltskin antagonizes <i>gypsy</i> chromatin insulator function in a tissue-specific manner. Journal of Cell Science, 2014, 127, 2956-66.	2.0	22
21	Argonaute2 and LaminB modulate gene expression by controlling chromatin topology. PLoS Genetics, 2018, 14, e1007276.	3.5	20
22	Anchoring cortical granules in the cortex ensures trafficking to the plasma membrane for post-fertilization exocytosis. Nature Communications, 2019, 10, 2271.	12.8	19
23	Messenger RNA is a functional component of a chromatin insulator complex. EMBO Reports, 2013, 14, 916-922.	4.5	17
24	Resource: A multiâ€species multiâ€timepoint transcriptome database and webpage for the pineal gland and retina. Journal of Pineal Research, 2020, 69, e12673.	7.4	16
25	Transcriptome of HPÎ ² CD-treated Niemann-Pick disease type C1 cells highlights GPNMB as a biomarker for therapeutics. Human Molecular Genetics, 2021, 30, 2456-2468.	2.9	15
26	Shep regulates $\langle i \rangle$ Drosophila $\langle i \rangle$ neuronal remodeling by controlling transcription of its chromatin targets. Development (Cambridge), 2018, 145, .	2.5	12
27	Ldb1 regulates carbonic anhydrase 1 during erythroid differentiation. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 885-891.	1.9	9
28	Argonaute2 attenuates active transcription by limiting RNA Polymerase II elongation in Drosophila melanogaster. Scientific Reports, 2018, 8, 15685.	3.3	9
29	Embryonic erythropoiesis and hemoglobin switching require transcriptional repressor ETO2 to modulate chromatin organization. Nucleic Acids Research, 2020, 48, 10226-10240.	14.5	9
30	The role of Niemann-Pick type C2 in zebrafish embryonic development. Development (Cambridge), 2021, 148, dev.194258.	2.5	7
31	Insight into the bone dysplasia mechanism of CRTAP-null osteoblasts. Bone Reports, 2022, 16, 101504.	0.4	0
32	The role of TMEM38B in OI osteoblasts differentiation and mineralization. Bone Reports, 2022, 16, 101509.	0.4	0