Jens Staal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8456658/publications.pdf Version: 2024-02-01

IENIS STAAL

#	Article	IF	CITATIONS
1	T cell antigen receptor stimulation induces MALT1 paracaspase–mediated cleavage of the NF-κB inhibitor A20. Nature Immunology, 2008, 9, 263-271.	14.5	409
2	Sensing of Viral Infection and Activation of Innate Immunity by Toll-Like Receptor 3. Clinical Microbiology Reviews, 2008, 21, 13-25.	13.6	274
3	T-cell receptor-induced JNK activation requires proteolytic inactivation of CYLD by MALT1. EMBO Journal, 2011, 30, 1742-1752.	7.8	196
4	Abscisic Acid as Pathogen Effector and Immune Regulator. Frontiers in Plant Science, 2017, 8, 587.	3.6	145
5	Early Responses in the Arabidopsis-Verticillium longisporum Pathosystem Are Dependent on NDR1, JA- and ET-Associated Signals via Cytosolic NPR1 and RFO1. Molecular Plant-Microbe Interactions, 2006, 19, 958-969.	2.6	130
6	A novel role of <scp>PR</scp> 2 in abscisic acid (<scp>ABA</scp>) mediated, pathogenâ€induced callose deposition in <i>Arabidopsis thaliana</i> . New Phytologist, 2013, 200, 1187-1199.	7.3	129
7	Characterisation of anArabidopsis-Leptosphaeria maculanspathosystem: resistance partially requires camalexin biosynthesis and is independent of salicylic acid, ethylene and jasmonic acid signalling. Plant Journal, 2004, 37, 9-20.	5.7	100
8	ABA Is Required for Leptosphaeria maculans Resistance via ABI1- and ABI4-Dependent Signaling. Molecular Plant-Microbe Interactions, 2007, 20, 335-345.	2.6	90
9	<i>RLM3</i> , a TIR domain encoding gene involved in broadâ€range immunity of Arabidopsis to necrotrophic fungal pathogens. Plant Journal, 2008, 55, 188-200.	5.7	88
10	Transgressive segregation reveals two Arabidopsis TIR-NB-LRR resistance genes effective againstLeptosphaeria maculans, causal agent of blackleg disease. Plant Journal, 2006, 46, 218-230.	5.7	85
11	Regulation of NF-κB signaling by caspases and MALT1 paracaspase. Cell Research, 2011, 21, 40-54.	12.0	83
12	Pharmacological inhibition of MALT1 protease activity protects mice in a mouse model of multiple sclerosis. Journal of Neuroinflammation, 2014, 11, 124.	7.2	76
13	The paracaspase <scp>MALT</scp> 1 mediates <scp>CARD</scp> 14â€induced signaling in keratinocytes. EMBO Reports, 2016, 17, 914-927.	4.5	71
14	Classification and Nomenclature of Metacaspases and Paracaspases: No More Confusion with Caspases. Molecular Cell, 2020, 77, 927-929.	9.7	71
15	<scp>MALT</scp> 1 cleaves the E3 ubiquitin ligase <scp>HOIL</scp> â€1 in activated T cells, generating a dominant negative inhibitor of <scp>LUBAC</scp> â€induced <scp>NF</scp> â€₽B signaling. FEBS Journal, 2016, 283, 403-412.	4.7	68
16	Targeting MALT1 Proteolytic Activity in Immunity, Inflammation and Disease: Good or Bad?. Trends in Molecular Medicine, 2016, 22, 135-150.	6.7	67
17	Dominant-negative mutations in human <i>IL6ST</i> underlie hyper-IgE syndrome. Journal of Experimental Medicine, 2020, 217, .	8.5	64
18	Inflammation and NF-l̂ºB Signaling in Prostate Cancer: Mechanisms and Clinical Implications. Cells, 2018, 7, 122.	4.1	61

JENS STAAL

#	Article	IF	CITATIONS
19	The multifaceted role of the E3 ubiquitin ligase <scp>HOIL</scp> â€1: beyond linear ubiquitination. Immunological Reviews, 2015, 266, 208-221.	6.0	50
20	A CARD9 Founder Mutation Disrupts NF-κB Signaling by Inhibiting BCL10 and MALT1 Recruitment and Signalosome Formation. Frontiers in Immunology, 2018, 9, 2366.	4.8	46
21	A human immune dysregulation syndrome characterized by severe hyperinflammation with a homozygous nonsense Roquin-1 mutation. Nature Communications, 2019, 10, 4779.	12.8	43
22	MALT1 is not alone after all: identification of novel paracaspases. Cellular and Molecular Life Sciences, 2016, 73, 1103-1116.	5.4	39
23	MALT1 Proteolytic Activity Suppresses Autoimmunity in a T Cell Intrinsic Manner. Frontiers in Immunology, 2019, 10, 1898.	4.8	38
24	Ubiquitination and phosphorylation of the CARD11-BCL10-MALT1 signalosome in T cells. Cellular Immunology, 2019, 340, 103877.	3.0	37
25	Ancient Origin of the CARD–Coiled Coil/Bcl10/MALT1-Like Paracaspase Signaling Complex Indicates Unknown Critical Functions. Frontiers in Immunology, 2018, 9, 1136.	4.8	35
26	Tracing the ancient origins of plant innate immunity. Trends in Plant Science, 2007, 12, 334-342.	8.8	34
27	NKT sublineage specification and survival requires the ubiquitin-modifying enzyme TNFAIP3/A20. Journal of Experimental Medicine, 2016, 213, 1973-1981.	8.5	31
28	Cleavage by MALT1 induces cytosolic release of A20. Biochemical and Biophysical Research Communications, 2010, 400, 543-547.	2.1	25
29	MALT1-Deficient Mice Develop Atopic-Like Dermatitis Upon Aging. Frontiers in Immunology, 2019, 10, 2330.	4.8	22
30	Prolonged exposure to IL-1β and IFNγ induces necrosis of L929 tumor cells via a p38MAPK/NF-κB/NO-dependent mechanism. Oncogene, 2008, 27, 3780-3788.	5.9	20
31	Layers of defense responses to <i>Leptosphaeria maculans</i> below the <i>RLM1</i> ―and camalexinâ€dependent resistances. New Phytologist, 2009, 182, 470-482.	7.3	20
32	<scp>MALT</scp> 1 targeting suppresses <scp>CARD</scp> 14â€induced psoriatic dermatitis in mice. EMBO Reports, 2020, 21, e49237.	4.5	18
33	Mepazine Inhibits RANK-Induced Osteoclastogenesis Independent of Its MALT1 Inhibitory Function. Molecules, 2018, 23, 3144.	3.8	17
34	Engineering a minimal cloning vector from a pUC18 plasmid backbone with an extended multiple cloning site. BioTechniques, 2019, 66, 254-259.	1.8	17
35	RLM3, a potential adaptor between specific TIR-NB-LRR receptors and DZC proteins. Communicative and Integrative Biology, 2008, 1, 59-61.	1.4	16
36	Importance of Validating Antibodies and Small Compound Inhibitors Using Genetic Knockout Studies—T Cell Receptor-Induced CYLD Phosphorylation by IKKε/TBK1 as a Case Study. Frontiers in Cell and Developmental Biology, 2018, 6, 40.	3.7	16

JENS STAAL

#	Article	IF	CITATIONS
37	Defining the combinatorial space of PKC::CARD C signal transduction nodes. FEBS Journal, 2021, 288, 1630-1647.	4.7	16
38	Phytohormones: Multifunctional nutraceuticals against metabolic syndrome and comorbid diseases. Biochemical Pharmacology, 2020, 175, 113866.	4.4	15
39	MALT1 Controls Attenuated Rabies Virus by Inducing Early Inflammation and T Cell Activation in the Brain. Journal of Virology, 2018, 92, .	3.4	14
40	Long-Term MALT1 Inhibition in Adult Mice Without Severe Systemic Autoimmunity. IScience, 2020, 23, 101557.	4.1	14
41	Cyclin D2 overexpression drives B1a-derived MCL-like lymphoma in mice. Journal of Experimental Medicine, 2021, 218, .	8.5	12
42	Deletion of <scp>Mucosaâ€Associated Lymphoid Tissue Lymphoma Translocation Protein</scp> 1 in Mouse T Cells Protects Against Development of Autoimmune Arthritis but Leads to Spontaneous Osteoporosis. Arthritis and Rheumatology, 2019, 71, 2005-2015.	5.6	11
43	Stabilization of the TAK1 adaptor proteins TAB2 and TAB3 is critical for optimal NFâ€₽B activation. FEBS Journal, 2020, 287, 3161-3164.	4.7	11
44	GC Content of Early Metazoan Genes and Its Impact on Gene Expression Levels in Mammalian Cell Lines. Genome Biology and Evolution, 2018, 10, 909-917.	2.5	10
45	Inhibition of MALT1 Decreases Neuroinflammation and Pathogenicity of Virulent Rabies Virus in Mice. Journal of Virology, 2018, 92, .	3.4	10
46	Applied cultural and social studies are needed for a sustainable reduction of genetic disease incidence. European Journal of Sociology and Anthropology, 2017, 2, 1-10.	0.2	10
47	A Two-Step Activation Mechanism of MALT1 Paracaspase. Journal of Molecular Biology, 2012, 419, 1-3.	4.2	7
48	Engineering a highly sensitive biosensor for abscisic acid in mammalian cells. FEBS Letters, 2022, 596, 2576-2590.	2.8	2
49	OP0176â€The paracaspase MALT1 plays a central role in the pathogenesis of rheumatoid arthritis. , 2017, ,		1
50	02.08â€The paracaspase malt1 plays a central role in the pathogenesis of rheumatoid arthritis. , 2017, , .		0