Meiying Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8456519/publications.pdf Version: 2024-02-01

MEIVING WU

#	Article	IF	CITATIONS
1	Engineered gold/black phosphorus nanoplatforms with remodeling tumor microenvironment for sonoactivated catalytic tumor theranostics. Bioactive Materials, 2022, 10, 515-525.	8.6	73
2	Carrier-free multifunctional nanomedicine for intraperitoneal disseminated ovarian cancer therapy. Journal of Nanobiotechnology, 2022, 20, 93.	4.2	18
3	An in Silico Approach to Reveal the Nanodisc Formulation of Doxorubicin. Frontiers in Bioengineering and Biotechnology, 2022, 10, 859255.	2.0	4
4	ATP-exhausted nanocomplexes for intratumoral metabolic intervention and photoimmunotherapy. Biomaterials, 2022, 284, 121503.	5.7	25
5	Mesoporous calcium peroxide-ignited NO generation for amplifying photothermal immunotherapy of breast cancer. Chemical Engineering Journal, 2022, 437, 135371.	6.6	18
6	Oxidative stress-amplified nanomedicine for intensified ferroptosis-apoptosis combined tumor therapy. Journal of Controlled Release, 2022, 347, 104-114.	4.8	42
7	Transforming "cold―tumors into "hot―ones via tumor-microenvironment-responsive siRNA micelleplexes for enhanced immunotherapy. Matter, 2022, 5, 2285-2305.	5.0	62
8	Melittin Tryptophan Substitution with a Fluorescent Amino Acid Reveals the Structural Basis of Selective Antitumor Effect and Subcellular Localization in Tumor Cells. Toxins, 2022, 14, 428.	1.5	8
9	Cuâ€Ðoped Polypyrrole with Multiâ€Catalytic Activities for Sonoâ€Enhanced Nanocatalytic Tumor Therapy. Small, 2022, 18, .	5.2	16
10	Polypyrrole Nanoenzymes as Tumor Microenvironment Modulators to Reprogram Macrophage and Potentiate Immunotherapy. Advanced Science, 2022, 9, .	5.6	77
11	Renalâ€Clearable Ultrasmall Polypyrrole Nanoparticles with Sizeâ€Regulated Property for Second Nearâ€Infrared Lightâ€Mediated Photothermal Therapy. Advanced Functional Materials, 2021, 31, 2008362.	7.8	72
12	Tumor Microenvironment-Specific Chemical Internalization for Enhanced Gene Therapy of Metastatic Breast Cancer. Research, 2021, 2021, .	2.8	10
13	Sonodynamic therapy: Another "light―in tumor treatment by exogenous stimulus. Smart Materials in Medicine, 2021, 2, 145-149.	3.7	11
14	Biomimetic nanomedicine toward personalized disease theranostics. Nano Research, 2021, 14, 2491-2511.	5.8	17
15	Metal-free two-dimensional nanomaterial-mediated photothermal tumor therapy. Smart Materials in Medicine, 2020, 1, 150-167.	3.7	28
16	Magnetic nanoparticles coated with polyphenols for spatio-temporally controlled cancer photothermal/immunotherapy. Journal of Controlled Release, 2020, 326, 131-139.	4.8	125
17	Two-dimensional highly oxidized ilmenite nanosheets equipped with Z-scheme heterojunction for regulating tumor microenvironment and enhancing reactive oxygen species generation. Chemical Engineering Journal, 2020, 390, 124524.	6.6	32
18	Dual-response oxygen-generating MnO2 nanoparticles with polydopamine modification for combined photothermal-photodynamic therapy. Chemical Engineering Journal, 2020, 389, 124494.	6.6	166

MEIYING WU

#	Article	IF	CITATIONS
19	Liposomes Encapsulating Neoantigens and Black Phosphorus Quantum Dots for Enhancing Photothermal Immunotherapy. Journal of Biomedical Nanotechnology, 2020, 16, 1394-1405.	0.5	15
20	SnTe@MnO ₂ â€&P Nanosheet–Based Intelligent Nanoplatform for Second Nearâ€Infrared Light–Mediated Cancer Theranostics. Advanced Functional Materials, 2019, 29, 1903791.	7.8	69
21	Ultrasound Molecular Imaging of Lymphocyte-endothelium Adhesion Cascade in Acute Cellular Rejection of Cardiac Allografts. Transplantation, 2019, 103, 1603-1611.	0.5	7
22	Focused Ultrasoundâ€Augmented Delivery of Biodegradable Multifunctional Nanoplatforms for Imagingâ€Guided Brain Tumor Treatment. Advanced Science, 2018, 5, 1700474.	5.6	71
23	MR imaging tracking of inflammation-activatable engineered neutrophils for targeted therapy of surgically treated glioma. Nature Communications, 2018, 9, 4777.	5.8	173
24	Ultrasound Molecular Imaging of Atherosclerosis for Early Diagnosis and Therapeutic Evaluation through Leucocyte-like Multiple Targeted Microbubbles. Theranostics, 2018, 8, 1879-1891.	4.6	57
25	Generic synthesis and versatile applications of molecularly organic–inorganic hybrid mesoporous organosilica nanoparticles with asymmetric Janus topologies and structures. Nano Research, 2017, 10, 3790-3810.	5.8	19
26	Endogenous Catalytic Generation of O ₂ Bubbles for <i>In Situ</i> Ultrasound-Guided High Intensity Focused Ultrasound Ablation. ACS Nano, 2017, 11, 9093-9102.	7.3	133
27	Core-shell LaPO4/g-C3N4 nanowires for highly active and selective CO2 reduction. Applied Catalysis B: Environmental, 2017, 201, 629-635.	10.8	109
28	Tumor vascular-targeted co-delivery of anti-angiogenesis and chemotherapeutic agents by mesoporous silica nanoparticle-based drug delivery system for synergetic therapy of tumor. International Journal of Nanomedicine, 2016, 11, 93.	3.3	63
29	"Manganese Extraction―Strategy Enables Tumor-Sensitive Biodegradability and Theranostics of Nanoparticles. Journal of the American Chemical Society, 2016, 138, 9881-9894.	6.6	246
30	Large Pore‣ized Hollow Mesoporous Organosilica for Redoxâ€Responsive Gene Delivery and Synergistic Cancer Chemotherapy. Advanced Materials, 2016, 28, 1963-1969.	11.1	245
31	Dual synergetic effects in MoS 2 /pyridine-modified g-C 3 N 4 composite for highly active and stable photocatalytic hydrogen evolution under visible light. Applied Catalysis B: Environmental, 2016, 190, 36-43.	10.8	133
32	Mesostructured CeO2/g-C3N4 nanocomposites: Remarkably enhanced photocatalytic activity for CO2 reduction by mutual component activations. Nano Energy, 2016, 19, 145-155.	8.2	349
33	Nanoparticle-enhanced generation of gene-transfected mesenchymal stem cells for inÂvivo cardiac repair. Biomaterials, 2016, 74, 188-199.	5.7	49
34	A Prussian Blueâ€Based Core–Shell Hollowâ€Structured Mesoporous Nanoparticle as a Smart Theranostic Agent with Ultrahigh pHâ€Responsive Longitudinal Relaxivity. Advanced Materials, 2015, 27, 6382-6389.	11.1	233
35	Highly selective CO ₂ photoreduction to CO over g-C ₃ N ₄ /Bi ₂ WO ₆ composites under visible light. Journal of Materials Chemistry A, 2015, 3, 5189-5196.	5.2	338
36	Mesostructured amorphous manganese oxides: facile synthesis and highly durable elimination of low-concentration NO at room temperature in air. Chemical Communications, 2015, 51, 5887-5889.	2.2	22

MEIYING WU

#	Article	IF	CITATIONS
37	Largeâ€Pore Ultrasmall Mesoporous Organosilica Nanoparticles: Micelle/Precursor Coâ€ŧemplating Assembly and Nuclearâ€Targeted Gene Delivery. Advanced Materials, 2015, 27, 215-222.	11.1	266
38	A salt-assisted acid etching strategy for hollow mesoporous silica/organosilica for pH-responsive drug and gene co-delivery. Journal of Materials Chemistry B, 2015, 3, 766-775.	2.9	61
39	Colloidal RBCâ€5haped, Hydrophilic, and Hollow Mesoporous Carbon Nanocapsules for Highly Efficient Biomedical Engineering. Advanced Materials, 2014, 26, 4294-4301.	11.1	196
40	Ultrasmall Confined Iron Oxide Nanoparticle MSNs as a pHâ€Responsive Theranostic Platform. Advanced Functional Materials, 2014, 24, 4273-4283.	7.8	66
41	Multifunctional Graphene Oxideâ€based Triple Stimuliâ€Responsive Nanotheranostics. Advanced Functional Materials, 2014, 24, 4386-4396.	7.8	115
42	Hollow Mesoporous Organosilica Nanoparticles: A Generic Intelligent Framework-Hybridization Approach for Biomedicine. Journal of the American Chemical Society, 2014, 136, 16326-16334.	6.6	338
43	Facile synthesis of hydrophilic multi-colour and upconversion photoluminescent mesoporous carbon nanoparticles for bioapplications. Chemical Communications, 2014, 50, 15772-15775.	2.2	24
44	Amorphous Fe ²⁺ -rich FeO _x loaded in mesoporous silica as a highly efficient heterogeneous Fenton catalyst. Dalton Transactions, 2014, 43, 9234-9241.	1.6	32
45	A facile ultrasonic process for the preparation of Co3O4 nanoflowers for room-temperature removal of low-concentration NOx. Catalysis Communications, 2014, 57, 73-77.	1.6	13
46	Breakâ€up of Twoâ€Dimensional MnO ₂ Nanosheets Promotes Ultrasensitive pHâ€Triggered Theranostics of Cancer. Advanced Materials, 2014, 26, 7019-7026.	11.1	404