Don Banfield

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8456504/publications.pdf

Version: 2024-02-01

90 papers

6,197 citations

43 h-index 66788 78 g-index

92 all docs 92 docs citations 92 times ranked 3102 citing authors

#	Article	IF	CITATIONS
1	Voyager 2 at Neptune: Imaging Science Results. Science, 1989, 246, 1422-1449.	6.0	573
2	Initial results from the InSight mission on Mars. Nature Geoscience, 2020, 13, 183-189.	5.4	274
3	SEIS: Insight's Seismic Experiment for Internal Structure of Mars. Space Science Reviews, 2019, 215, 12.	3.7	238
4	Aeolian processes at the Mars Exploration Rover Meridiani Planum landing site. Nature, 2005, 436, 58-61.	13.7	233
5	Atmospheric Imaging Results from the Mars Exploration Rovers: Spirit and Opportunity. Science, 2004, 306, 1753-1756.	6.0	219
6	Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data. Nature Geoscience, 2020, 13, 213-220.	5.4	207
7	The seismicity of Mars. Nature Geoscience, 2020, 13, 205-212.	5.4	194
8	Observation of moist convection in Jupiter's atmosphere. Nature, 2000, 403, 628-630.	13.7	182
9	The atmosphere of Mars as observed by InSight. Nature Geoscience, 2020, 13, 190-198.	5.4	161
10	Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini-TES. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	159
11	Jupiter's Cloud Structure from Galileo Imaging Data. Icarus, 1998, 135, 230-250.	1.1	158
12	Moist convection as an energy source for the large-scale motions in Jupiter's atmosphere. Nature, 2000, 403, 630-632.	13.7	155
13	Galileo's First Images of Jupiter and the Galilean Satellites. Science, 1996, 274, 377-385.	6.0	152
14	One Martian year of atmospheric observations using MER Mini-TES. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	147
15	Neptune's Story. Science, 1989, 245, 500-504.	6.0	138
16	Traveling waves in the martian atmosphere from MGS TES Nadir data. Icarus, 2004, 170, 365-403.	1.1	107
17	Geology of the InSight landing site on Mars. Nature Communications, 2020, 11, 1014.	5.8	107
18	Galileo Imaging of Jupiter's Atmosphere: The Great Red Spot, Equatorial Region, and White Ovals. Icarus, 1998, 135, 265-275.	1.1	106

#	Article	IF	CITATIONS
19	InSight Auxiliary Payload Sensor Suite (APSS). Space Science Reviews, 2019, 215, 1.	3.7	104
20	First Atmospheric Science Results from the Mars Exploration Rovers Mini-TES. Science, 2004, 306, 1750-1753.	6.0	102
21	Forced waves in the martian atmosphere from MGS TES nadir data. Icarus, 2003, 161, 319-345.	1.1	101
22	The Marsquake catalogue from InSight, sols O–478. Physics of the Earth and Planetary Interiors, 2021, 310, 106595.	0.7	97
23	Thermal tides in the Martian middle atmosphere as seen by the Mars Climate Sounder. Journal of Geophysical Research, 2009, $114, \ldots$	3.3	94
24	Atmospheric Science with InSight. Space Science Reviews, 2018, 214, 1.	3.7	88
25	Geology and Physical Properties Investigations by the InSight Lander. Space Science Reviews, 2018, 214, 1.	3.7	77
26	Traveling waves in the Northern Hemisphere of Mars. Geophysical Research Letters, 2002, 29, 29-1-29-4.	1.5	72
27	Intense polar temperature inversion in the middle atmosphere on Mars. Nature Geoscience, 2008, 1, 745-749.	5.4	71
28	A dynamical history of the inner Neptunian satellites. Icarus, 1992, 99, 390-401.	1.1	69
29	Crustal and time-varying magnetic fields at the InSight landing site on Mars. Nature Geoscience, 2020, 13, 199-204.	5.4	68
30	Color and the Vertical Structure in Jupiter's Belts, Zones, and Weather Systems. Icarus, 2001, 154, 459-474.	1.1	67
31	Evaluating the Wind-Induced Mechanical Noise on the InSight Seismometers. Space Science Reviews, 2017, 211, 429-455.	3.7	65
32	Companion guide to the marsquake catalog from InSight, Sols 0–478: Data content and non-seismic events. Physics of the Earth and Planetary Interiors, 2021, 310, 106597.	0.7	64
33	Thermal tides and stationary waves on Mars as revealed by Mars Global Surveyor thermal emission spectrometer. Journal of Geophysical Research, 2000, 105, 9521-9537.	3.3	62
34	The Mars Environmental Dynamics Analyzer, MEDA. A Suite of Environmental Sensors for the Mars 2020 Mission. Space Science Reviews, 2021, 217, 48.	3.7	57
35	The science case for an orbital mission to Uranus: Exploring the origins and evolution of ice giant planets. Planetary and Space Science, 2014, 104, 122-140.	0.9	56
36	Stratospheric aerosols on Jupiter from Cassini observations. Icarus, 2013, 226, 159-171.	1.1	54

#	Article	IF	CITATIONS
37	Velocity and vorticity measurements of Jupiter's Great Red Spot using automated cloud feature tracking. Icarus, 2007, 188, 35-46.	1.1	53
38	Uranus and Neptune missions: A study in advance of the next Planetary Science Decadal Survey. Planetary and Space Science, 2019, 177, 104680.	0.9	50
39	Modeling of Ground Deformation and Shallow Surface Waves Generated by Martian Dust Devils and Perspectives for Near-Surface Structure Inversion. Space Science Reviews, 2017, 211, 501-524.	3.7	49
40	Impact-Seismic Investigations of the InSight Mission. Space Science Reviews, 2018, 214, 1.	3.7	48
41	The dynamic atmospheric and aeolian environment of Jezero crater, Mars. Science Advances, 2022, 8, .	4.7	47
42	A Study of Daytime Convective Vortices and Turbulence in the Martian Planetary Boundary Layer Based on Halfâ€aâ€Year of InSight Atmospheric Measurements and Largeâ€Eddy Simulations. Journal of Geophysical Research E: Planets, 2021, 126, .	1.5	45
43	Uranus Pathfinder: exploring the origins and evolution of Ice Giant planets. Experimental Astronomy, 2012, 33, 753-791.	1.6	44
44	Subsurface Structure at the InSight Landing Site From Compliance Measurements by Seismic and Meteorological Experiments. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006387.	1.5	44
45	Thermal tides during the 2001 Martian globalâ€scale dust storm. Journal of Geophysical Research E: Planets, 2014, 119, 506-519.	1.5	42
46	Near-IR Spectrophotometry of Jovian Aerosols—Meridional and Vertical Distributions. Icarus, 1998, 134, 11-23.	1.1	41
47	2 μm Spectrophotometry of Jovian Stratospheric Aerosolsâ€"Scattering Opacities, Vertical Distributions, and Wind Speeds. Icarus, 1996, 121, 389-410.	1.1	38
48	OSS (Outer Solar System): a fundamental and planetary physics mission to Neptune, Triton and the Kuiper Belt. Experimental Astronomy, 2012, 34, 203-242.	1.6	37
49	Saturn's cloud structure inferred from Cassini ISS. Icarus, 2013, 225, 93-110.	1.1	36
50	Near-IR Spectrophotometry of Saturnian Aerosolsâ€"Meridional and Vertical Distribution. Icarus, 2001, 152, 407-422.	1.1	35
51	An Environmental Wind Tunnel Facility for Testing Meteorological Sensor Systems. Journal of Atmospheric and Oceanic Technology, 2014, 31, 447-457.	0.5	35
52	Saturn's emitted power. Journal of Geophysical Research, 2010, 115, .	3.3	33
53	A Comodulation Analysis of Atmospheric Energy Injection Into the Ground Motion at InSight, Mars. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006538.	1.5	33
54	Pressure Effects on the SEISâ€InSight Instrument, Improvement of Seismic Records, and Characterization of Long Period Atmospheric Waves From Ground Displacements. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006278.	1.5	31

#	Article	lF	Citations
55	Seasonal Variability of the Daytime and Nighttime Atmospheric Turbulence Experienced by InSight on Mars. Geophysical Research Letters, 2021, 48, e2021GL095453.	1.5	31
56	Effects of a Large Dust Storm in the Nearâ€Surface Atmosphere as Measured by InSight in Elysium Planitia, Mars. Comparison With Contemporaneous Measurements by Mars Science Laboratory. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006493.	1.5	30
57	The Holy Grail: A road map for unlocking the climate record stored within Mars' polar layered deposits. Planetary and Space Science, 2020, 184, 104841.	0.9	30
58	Monitoring of Dust Devil Tracks Around the InSight Landing Site, Mars, and Comparison With In Situ Atmospheric Data. Geophysical Research Letters, 2020, 47, e2020GL087234.	1.5	30
59	Martian Infrasound: Numerical Modeling and Analysis of InSight's Data. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006376.	1.5	28
60	The Hera Saturn entry probe mission. Planetary and Space Science, 2016, 130, 80-103.	0.9	26
61	Absolute Reflectivity Spectra of Jupiter: 0.25–3.5 Micrometers. Icarus, 1996, 121, 351-360.	1.1	25
62	Onâ€Deck Seismology: Lessons from InSight for Future Planetary Seismology. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006353.	1.5	25
63	Scientific Observations With the InSight Solar Arrays: Dust, Clouds, and Eclipses on Mars. Earth and Space Science, 2020, 7, e2019EA000992.	1.1	24
64	An HST Study of Jovian Chromophores. Icarus, 2001, 149, 94-106.	1.1	23
65	Vortexâ€Dominated Aeolian Activity at InSight's Landing Site, Part 1: Multiâ€Instrument Observations, Analysis, and Implications. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006757.	1.5	23
66	Strong jet and a new thermal wave in Saturn's equatorial stratosphere. Geophysical Research Letters, 2008, 35, .	1.5	22
67	Soil Thermophysical Properties Near the InSight Lander Derived From 50 Sols of Radiometer Measurements. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006859.	1.5	22
68	Determining a tilt in Titan's north–south albedo asymmetry from Cassini images. Icarus, 2009, 203, 242-249.	1.1	21
69	A Martian sonic anemometer. , 2005, , .		20
70	Vortexâ€Dominated Aeolian Activity at InSight's Landing Site, Part 2: Local Meteorology, Transport Dynamics, and Model Analysis. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006514.	1.5	19
71	Winds, waves and shorelines from ancient martian seas. Icarus, 2015, 250, 368-383.	1.1	18
72	Jovian chromophore characteristics from multispectral HST images. Icarus, 2011, 215, 552-583.	1.1	16

#	Article	IF	CITATIONS
73	Constraining Martian Regolith and Vortex Parameters From Combined Seismic and Meteorological Measurements. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006410.	1.5	16
74	Martian Weather Correlation Length Scales. Icarus, 1996, 119, 130-143.	1.1	13
75	A Martian acoustic anemometer. Journal of the Acoustical Society of America, 2016, 140, 1420-1428.	0.5	13
76	Seasonal seismic activity on Mars. Earth and Planetary Science Letters, 2021, 576, 117171.	1.8	13
77	Aerosols and methane in the ice giant atmospheres inferred from spatially resolved, near-infrared spectra: I. Uranus, 2001–2007. Icarus, 2018, 310, 54-76.	1.1	12
78	InSight Pressure Data Recalibration, and Its Application to the Study of Longâ€Term Pressure Changes on Mars. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	12
79	Kronos: exploring the depths of Saturn with probes and remote sensing through an international mission. Experimental Astronomy, 2009, 23, 947-976.	1.6	10
80	Geophysical Observations of Phobos Transits by InSight. Geophysical Research Letters, 2020, 47, e2020GL089099.	1.5	10
81	Operations and calibration of the solid-state imaging system during the Galileo extended mission at Jupiter. Optical Engineering, 2003, 42, 494.	0.5	8
82	Search for Infrasound Signals in InSight Data Using Coupled Pressure/Ground Deformation Methods. Bulletin of the Seismological Society of America, 2021, 111, 3055-3064.	1.1	8
83	Accommodation Study for an Anemometer on a Martian Lander. Journal of Atmospheric and Oceanic Technology, 2011, 28, 210-218.	0.5	7
84	In Situ exploration of the giant planets. Experimental Astronomy, 2022, 54, 975-1013.	1.6	5
85	SPRITE: A Saturn probe new frontiers mission. , 2018, , .		4
86	Forward Modeling of the Phobos Tides and Applications to the First Martian Year of the InSight Mission. Earth and Space Science, 2021, 8, e2021EA001669.	1,1	4
87	Planetary descent probes: polarization nephelometer and hydrogen ortho/para instruments., 2005,,.		3
88	On the problem of a variable Mars atmospheric composition in the determination of temperature and density from the adiabatic speed of sound. Planetary and Space Science, 2020, 193, 105064.	0.9	2
89	The characterisation of cMUTs at low gas pressures. , 0, , .		1
90	Flow Testing of a Sonic Anemometer for the Martian Environment. , 2020, , .		O