Gregory Holmes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/84564/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neuroanatomical Remodeling of Colonic Interstitial Cells of Cajal after Spinal Cord Injury. FASEB Journal, 2022, 36, .	0.2	1
2	Altered physiology of gastrointestinal vagal afferents following neurotrauma. Neural Regeneration Research, 2021, 16, 254.	1.6	11
3	Colonic Neuromuscular Transmission Failure in Female Rats after Spinal Cord Injury. FASEB Journal, 2021, 35, .	0.2	0
4	Spinal cord injury-mediated changes in electrophysiological properties of rat gastric nodose ganglion neurons. Experimental Neurology, 2021, 348, 113927.	2.0	0
5	Recommendations for evaluation of bladder and bowel function in pre-clinical spinal cord injury research. Journal of Spinal Cord Medicine, 2020, 43, 165-176.	0.7	11
6	Gastric vagal afferent neuropathy following experimental spinal cord injury. Experimental Neurology, 2020, 323, 113092.	2.0	9
7	Diminished enteric neuromuscular transmission in the distal colon following experimental spinal cord injury. Experimental Neurology, 2020, 331, 113377.	2.0	9
8	Gastrointestinal dysfunction after spinal cord injury. Experimental Neurology, 2019, 320, 113009.	2.0	49
9	Purinergic receptor expression and function in rat vagal sensory neurons innervating the stomach. Neuroscience Letters, 2019, 706, 182-188.	1.0	7
10	Investigating neurogenic bowel in experimental spinal cord injury: where to begin?. Neural Regeneration Research, 2019, 14, 222.	1.6	12
11	Anatomical and Functional Changes to the Colonic Neuromuscular Compartment after Experimental Spinal Cord Injury. Journal of Neurotrauma, 2018, 35, 1079-1090.	1.7	28
12	Diminished gastric prokinetic response to ghrelin in a rat model of spinal cord injury. Neurogastroenterology and Motility, 2018, 30, e13258.	1.6	8
13	Mesenteric vascular dysregulation and intestinal inflammation accompanies experimental spinal cord injury. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 312, R146-R156.	0.9	25
14	Gastric vagal motoneuron function is maintained following experimental spinal cord injury. Neurogastroenterology and Motility, 2014, 26, 1717-1729.	1.6	16
15	Ghrelin increases vagally mediated gastric activity by central sites of action. Neurogastroenterology and Motility, 2014, 26, 272-282.	1.6	36
16	Plasticity in the brainstem vagal circuits controlling gastric motor function triggered by corticotropin releasing factor. Journal of Physiology, 2014, 592, 4591-4605.	1.3	30
17	Fabrication and Implantation of Miniature Dual-element Strain Gages for Measuring In Vivo Gastrointestinal Contractions in Rodents Journal of Visualized Experiments, 2014, , 51739.	0.2	4
18	A critical reâ€evaluation of the specificity of action of perivagal capsaicin. Journal of Physiology, 2013, 591, 1563-1580.	1.3	46

GREGORY HOLMES

#	Article	IF	CITATIONS
19	Vagal afferent fibres determine the oxytocinâ€induced modulation of gastric tone. Journal of Physiology, 2013, 591, 3081-3100.	1.3	42
20	Levels of nitric oxide synthase and cholecystokinin mRNA in the upper gastrointestinal tract of rats following experimental spinal cord injury. FASEB Journal, 2013, 27, 536.1.	0.2	0
21	Upper gastrointestinal dysmotility after spinal cord injury: is diminished vagal sensory processing one culprit?. Frontiers in Physiology, 2012, 3, 277.	1.3	35
22	Experimental spinal cord injury alters the dose response of vagal motoneurons to TRH. FASEB Journal, 2012, 26, 701.8.	0.2	0
23	Experimental spinal cord injury in rats diminishes vagally-mediated gastric responses to cholecystokinin-8s. Neurogastroenterology and Motility, 2011, 23, e69-e79.	1.6	23
24	Timeâ€course of recovery of gastric emptying and motility in rats with experimental spinal cord injury. Neurogastroenterology and Motility, 2010, 22, 62.	1.6	32
25	Gastric emptying of enterally administered liquid meal in conscious rats and during sustained anaesthesia. Neurogastroenterology and Motility, 2010, 22, 181-185.	1.6	22
26	Effects of brain stem cholecystokinin-8s on gastric tone and esophageal-gastric reflex. American Journal of Physiology - Renal Physiology, 2009, 296, G621-G631.	1.6	26
27	Gastric dysreflexia after acute experimental spinal cord injury in rats. Neurogastroenterology and Motility, 2009, 21, 197-206.	1.6	26
28	Vagally mediated effects of glucagonâ€like peptide 1: <i>in vitro</i> and <i>in vivo</i> gastric actions. Journal of Physiology, 2009, 587, 4749-4759.	1.3	69
29	Effects of chronic spinal cord injury on body weight and body composition in rats fed a standard chow diet. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R1102-R1109.	0.9	40
30	5-Hydroxytryptamine2C receptors on pudendal motoneurons innervating the external anal sphincter. Brain Research, 2005, 1057, 65-71.	1.1	6
31	Serotonergic fiber sprouting to external anal sphincter motoneurons after spinal cord contusion. Experimental Neurology, 2005, 193, 29-42.	2.0	43
32	Immunocytochemical localization of TNF type 1 and type 2 receptors in the rat spinal cord. Brain Research, 2004, 1025, 210-219.	1.1	44
33	Dissociation of the effects of nucleus raphe obscurus or rostral ventrolateral medulla lesions on eliminatory and sexual reflexes. Physiology and Behavior, 2002, 75, 49-55.	1.0	19
34	External Anal Sphincter Hyperreflexia Following Spinal Transection in the Rat. Journal of Neurotrauma, 1998, 15, 451-457.	1.7	40
35	Nucleus raphe obscurus (nRO) regulation of anorectal motility in rats. Brain Research, 1997, 759, 197-204.	1.1	12
36	Thyrotropin-releasing hormone (TRH) and CNS regulation of anorectal motility in the rat. Journal of the Autonomic Nervous System, 1995, 56, 8-14.	1.9	11