
Sang Mi Shin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8456145/publications.pdf Version: 2024-02-01

SANC MI SHIN

#	Article	IF	CITATIONS
1	Synthesis and Biological Evaluation of PF-543 Derivative Containing Aliphatic Side Chain. Chemical and Pharmaceutical Bulletin, 2019, 67, 599-603.	1.3	6
2	<i>Cudrania Tricuspidata</i> Extract and Its Major Constituents Inhibit Oxidative Stress-Induced Liver Injury. Journal of Medicinal Food, 2019, 22, 602-613.	1.5	19
3	Inhibitory Effect of Sestrin 2 on Hepatic Stellate Cell Activation and Liver Fibrosis. Antioxidants and Redox Signaling, 2019, 31, 243-259.	5.4	26
4	Synthesis of FTY720 (Fingolimod) Derivatives Containing Serine Structure. Bulletin of the Korean Chemical Society, 2018, 39, 261-264.	1.9	2
5	Synthesis and Biological Evaluation of FTY720 (Fingolimod) Derivatives with Aromatic Head Group as Anticancer Agents. Chemical and Pharmaceutical Bulletin, 2018, 66, 1015-1018.	1.3	6
6	Synthesis of Novel FTY720 Analogs with Anticancer Activity through PP2A Activation. Molecules, 2018, 23, 2750.	3.8	12
7	Potential role of mitochondrial ROS in Sestrin2 degradation. Biotechnology and Bioprocess Engineering, 2017, 22, 14-21.	2.6	2
8	5-Fluorouracil inhibits cell migration by induction of Sestrin2 in colon cancer cells. Archives of Pharmacal Research, 2017, 40, 231-239.	6.3	20
9	Induction of Lipin1 by ROS-Dependent SREBP-2 Activation. Toxicological Research, 2017, 33, 219-224.	2.1	20
10	Sestrin2 inhibits hypoxia-inducible factor-1α accumulation via AMPK-mediated prolyl hydroxylase regulation. Free Radical Biology and Medicine, 2016, 101, 511-523.	2.9	38
11	The Role of Lipin-1 in the Regulation of Fibrogenesis and TGF-β Signaling in Hepatic Stellate Cells. Toxicological Sciences, 2016, 153, 28-38.	3.1	14
12	Sestrin2: A Promising Therapeutic Target for Liver Diseases. Biological and Pharmaceutical Bulletin, 2015, 38, 966-970.	1.4	22
13	Regulation of Toll-like Receptor-Mediated Sestrin2 Induction by AP-1, Nrf2, and the Ubiquitin-Proteasome System in Macrophages. Toxicological Sciences, 2015, 144, 425-435.	3.1	62
14	Sestrin2–AMPK activation protects mitochondrial function against glucose deprivation-induced cytotoxicity. Cellular Signalling, 2015, 27, 1533-1543.	3.6	46
15	Role of sestrin2 in the regulation of proinflammatory signaling in macrophages. Free Radical Biology and Medicine, 2015, 78, 156-167.	2.9	91
16	lsorhamnetin protects against oxidative stress by activating Nrf2 and inducing the expression of its target genes. Toxicology and Applied Pharmacology, 2014, 274, 293-301.	2.8	112
17	Resveratrol attenuates methylglyoxal-induced mitochondrial dysfunction and apoptosis by Sestrin2 induction. Toxicology and Applied Pharmacology, 2014, 280, 314-322.	2.8	44
18	Methylglyoxal Induces Mitochondrial Dysfunction and Cell Death in Liver. Toxicological Research, 2014, 30, 193-198.	2.1	69

#	Article	IF	CITATIONS
19	Role of the Nrf2-ARE Pathway in Liver Diseases. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-9.	4.0	155
20	The AMPK activation by sauchinone, a Saururus chinensis lignan, enables hepatocytes to protect against the toxicity induced by iron overload. FASEB Journal, 2009, 23, 581.11.	0.5	0