List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8455970/publications.pdf Version: 2024-02-01

WELLIN FAN

#	Article	IF	CITATIONS
1	Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition. Journal of Applied Physics, 2005, 98, 013505.	1.1	638
2	Electronic band structure and effective mass parameters of Ge1-xSnx alloys. Journal of Applied Physics, 2012, 112, .	1.1	194
3	Effects of rapid thermal annealing on structure and luminescence of self-assembled InAs/GaAs quantum dots. Applied Physics Letters, 1998, 72, 3335-3337.	1.5	183
4	Characteristics of InGaAs quantum dot infrared photodetectors. Applied Physics Letters, 1998, 73, 3153-3155.	1.5	163
5	Electronic properties of zincâ€blende GaN, AlN, and their alloys Ga1â^'xAlxN. Journal of Applied Physics, 1996, 79, 188-194.	1.1	138
6	Electronic structures of superlattices under in-plane magnetic field. Physical Review B, 1989, 40, 8508-8515.	1.1	135
7	Effects of size and shape on electronic states of quantum dots. Physical Review B, 2006, 74, .	1.1	99
8	Band parameters and electronic structures of wurtzite ZnO and ZnOâ^•MgZnO quantum wells. Journal of Applied Physics, 2006, 99, 013702.	1.1	74
9	Comparison of nitrogen compositions in the as-grown GaNxAs1â^x on GaAs measured by high-resolution x-ray diffraction and secondary-ion mass spectroscopy. Applied Physics Letters, 2002, 80, 4136-4138.	1.5	67
10	Valence hole subbands and optical gain spectra of GaN/Ga1â^'xAlxN strained quantum wells. Journal of Applied Physics, 1996, 80, 3471-3478.	1.1	66
11	Comparison of electronic band structure and optical transparency conditions ofInxGa1â^'xAs1â^'yNyâ^•GaAsquantum wells calculated by 10-band, 8-band, and 6-bandkâ^™pmodels. Physical Review B, 2005, 72, .	1.1	64
12	Analysis of optical gain and threshold current density of wurtzite InGaN/GaN/AlGaN quantum well lasers. Journal of Applied Physics, 1998, 84, 1813-1819.	1.1	56
13	Ultrathin Highly Luminescent Twoâ€Monolayer Colloidal CdSe Nanoplatelets. Advanced Functional Materials, 2019, 29, 1901028.	7.8	56
14	Rapid thermal annealing of GaNxAs1â^'x grown by radio-frequency plasma assisted molecular beam epitaxy and its effect on photoluminescence. Journal of Applied Physics, 2002, 91, 4900-4903.	1.1	48
15	Widely tunable intersubband energy spacing of self-assembled InAs/GaAs quantum dots due to interface intermixing. Journal of Applied Physics, 1999, 86, 2687-2690.	1.1	40
16	Theoretical gain of strained GeSn0.02/Ge1â^'xâ^'y′SixSny′ quantum well laser. Journal of Applied Physics, 2010, 107, 073108.	1.1	39
17	Electronic band structures of GaInNAs/GaAs compressive strained quantum wells. Journal of Applied Physics, 2001, 90, 843-847.	1.1	38
18	X-ray diffraction and optical characterization of interdiffusion in self-assembled InAs/GaAs quantum-dot superlattices. Applied Physics Letters, 2000, 77, 2130-2132.	1.5	36

#	Article	IF	CITATIONS
19	Electronic structures of wurtzite ZnO and ZnO/MgZnO quantum well. Journal of Crystal Growth, 2006, 287, 28-33.	0.7	32
20	Chip-Based Measurement-Device-Independent Quantum Key Distribution Using Integrated Silicon Photonic Systems. Physical Review Applied, 2020, 14, .	1.5	32
21	Polarization dependence of intraband absorption in self-organized quantum dots. Applied Physics Letters, 1998, 73, 1997-1999.	1.5	31
22	High-Temperature Continuous-Wave Single-Mode Operation of 1.3-\$mu\$m p-Doped InAs–GaAs Quantum-Dot VCSELs. IEEE Photonics Technology Letters, 2009, 21, 1211-1213.	1.3	29
23	Effect of lateral size and thickness on the electronic structure and optical properties of quasi two-dimensional CdSe and CdS nanoplatelets. Journal of Applied Physics, 2016, 119, .	1.1	28
24	Determination of nitrogen composition in GaNxAs1â^'x epilayer on GaAs. Journal of Crystal Growth, 2004, 268, 470-474.	0.7	27
25	Solution-processed inorganic copper(i) thiocyanate as a hole injection layer for high-performance quantum dot-based light-emitting diodes. RSC Advances, 2017, 7, 26322-26327.	1.7	27
26	Tuning InAs quantum dots for high areal density and wideband emission. Applied Physics Letters, 2007, 90, 113103.	1.5	26
27	Effect of silver nanowire length in a broad range on optical and electrical properties as a transparent conductive film. Optical Materials Express, 2017, 7, 1105.	1.6	26
28	Improving the Fill Factor of Perovskite Solar Cells by Employing an Amine-tethered Diketopyrrolopyrrole-Based Polymer as the Dopant-free Hole Transport Layer. ACS Applied Energy Materials, 2020, 3, 9600-9609.	2.5	26
29	Photoluminescence characteristics of GalnNAs quantum wells annealed at high temperature. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 964.	1.6	25
30	Electronic structures of wurtzite ZnO, BeO, MgO and p-type doping in Zn1â^'xYxO (Y=Mg, Be). Computational Materials Science, 2008, 44, 72-78.	1.4	25
31	Optoelectronic performance optimization for transparent conductive layers based on randomly arranged silver nanorods. Optics Express, 2015, 23, 6209.	1.7	24
32	Band structure of Ge _{1â^'x} Sn _x alloy: a full-zone 30-band k · p model. New Journal of Physics, 2019, 21, 073037.	1.2	24
33	Anti-ambipolar behavior and photovoltaic effect in p-MoTe ₂ /n-InSe heterojunctions. Journal of Materials Chemistry C, 2021, 9, 10372-10380.	2.7	24
34	Incorporation of N into GaAsN under N overpressure and underpressure conditions. Journal of Applied Physics, 2003, 94, 1069-1073.	1.1	23
35	Study of interdiffusion in GalnNAsâ^•GaAs quantum well structure emitting at 1.3μm by eight-band kâ^™p method. Journal of Applied Physics, 2005, 97, 103718.	1.1	23
36	Vertically stacked Bi ₂ Se ₃ /MoTe ₂ heterostructure with large band offsets for nanoelectronics. Nanoscale, 2021, 13, 15403-15414.	2.8	23

#	Article	IF	CITATIONS
37	Study of interdiffusion in GaAsSbNâ^•GaAs quantum well structure by ten-band kâ^™p method. Journal of Applied Physics, 2005, 98, 026102.	1.1	22
38	Room-temperature continuous-wave operation of the In(Ga)As/GaAs quantum-dot VCSELs for the 1.3 µm optical-fibre communication. Semiconductor Science and Technology, 2009, 24, 055003.	1.0	22
39	Ge _{0.95} Sn _{0.05} Gate-All-Around p-Channel Metal-Oxide-Semiconductor Field-Effect Transistors with Sub-3 nm Nanowire Width. Nano Letters, 2021, 21, 5555-5563.	4.5	21
40	Current Conduction Model for Oxide-Based Resistive Random Access Memory Verified by Low-Frequency Noise Analysis. IEEE Transactions on Electron Devices, 2013, 60, 1272-1275.	1.6	20
41	Molecular Aggregation of Naphthalene Diimide(NDI) Derivatives in Electron Transport Layers of Inverted Perovskite Solar Cells and Their Influence on the Device Performance. Chemistry - an Asian Journal, 2020, 15, 112-121.	1.7	20
42	Electronic band structures and optical gain spectra of strained wurtzite GaN-Al/sub x/Ga/sub 1-x/N quantum-well lasers. IEEE Journal of Quantum Electronics, 1998, 34, 526-534.	1.0	19
43	Band offsets at GalnP/AlGalnP(001) heterostructures lattice matched to GaAs. Applied Physics Letters, 1998, 73, 1098-1100.	1.5	19
44	Transverse electric dominant intersubband absorption in Si-doped GaInAsNâ^•GaAs quantum wells. Journal of Applied Physics, 2006, 99, 043514.	1.1	19
45	Tensile-strain and doping enhanced direct bandgap optical transition of n+ doped Ge/GeSi quantum wells. Journal of Applied Physics, 2013, 114, .	1.1	19
46	Temperature-dependent optoelectronic properties of quasi-2D colloidal cadmium selenide nanoplatelets. Nanoscale, 2017, 9, 6595-6605.	2.8	18
47	Effect of size and shape on electronic and optical properties of CdSe quantum dots. Optik, 2018, 155, 242-250.	1.4	18
48	Strong Plasmon-Wannier Mott Exciton Interaction with High Aspect Ratio Colloidal Quantum Wells. Matter, 2020, 2, 1550-1563.	5.0	18
49	Polarity‣witchable and Selfâ€Driven Photoâ€Response Based on Vertically Stacked Typeâ€III GeSe/SnS ₂ Heterojunction. Advanced Materials Interfaces, 2022, 9, .	1.9	18
50	Effects of tensile strain in barrier on optical gain spectra of GaInNAs/GaAsN quantum wells. Journal of Applied Physics, 2003, 93, 5836-5838.	1.1	17
51	Study of Complex Optical Constants of Neat Cadmium Selenide Nanoplatelets Thin Films by Spectroscopic Ellipsometry. Journal of Physical Chemistry Letters, 2021, 12, 191-198.	2.1	17
52	GaAs-based heterojunction p-i-n photodetectors using pentanary InGaAsNSb as the intrinsic layer. IEEE Photonics Technology Letters, 2005, 17, 1932-1934.	1.3	16
53	Electronic structure and optical gain saturation of InAs1â^'xNx/GaAs quantum dots. Journal of Applied Physics, 2009, 105, 123705.	1.1	16
54	Realizing White Emission of Single-Layer Dual-Color Perovskite Light-Emitting Devices by Modulating the Electroluminescence Emission Spectra. Journal of Physical Chemistry Letters, 2021, 12, 10197-10203.	2.1	16

#	Article	IF	CITATIONS
55	Band structure parameters of zinc-blende GaN, AlN and their alloys Ga1â^'xAlxN. Solid State Communications, 1996, 97, 381-384.	0.9	15
56	Molecular beam epitaxial growth of GaAs1â^'XNX with dispersive nitrogen source. Journal of Crystal Growth, 2002, 242, 87-94.	0.7	15
57	The role of nitrogen-nitrogen pairs in the deviation of the GaAsN lattice parameter from Vegard's law. Journal of Applied Physics, 2004, 96, 2010-2014.	1.1	15
58	Impact of surface rouglmess on silicon and germanium ultra-thin-body MOSFETs. , 0, , .		15
59	Low antimony-doped GaNxAs1â^'x on GaAs grown by solid-source molecular-beam epitaxy. Journal of Crystal Growth, 2003, 254, 305-309.	0.7	14
60	Valence band structure of ultrathin silicon and germanium channels in metal-oxide-semiconductor field-effect transistors. Journal of Applied Physics, 2005, 98, 024504.	1.1	14
61	Temperature Characteristics of 1.3-\$mu\$m p-Doped InAs–GaAs Quantum-Dot Vertical-Cavity Surface-Emitting Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 743-748.	1.9	14
62	Photoluminescence quenching mechanisms in GalnNAs/GaAs quantum well grown by solid source molecular beam epitaxy. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2003, 21, 2324.	1.6	13
63	Investigation of the optical properties of InGaAsNâ^•GaAsâ^•GaAsP multiple-quantum-well laser with 8-band and 10-band k·p model. Journal of Applied Physics, 2004, 96, 4663-4665.	1.1	13
64	Influence ofNdoping on the Rashba coefficient, semiconductor-metal transition, and electron effective mass inInSb1â^'xNxnanowires: Ten-bandkâ^™pmodel. Physical Review B, 2007, 75, .	1.1	13
65	Electronic band structure and optical gain of GaNxBiyAs1â^'xâ^'y/GaAs pyramidal quantum dots. Journal of Applied Physics, 2016, 119, 143103.	1.1	13
66	Inverted Solar Cells with Thermally Evaporated Selenium as an Active Layer. ACS Applied Energy Materials, 2020, 3, 7345-7352.	2.5	13
67	Optical properties of two-dimensional semi-conductive MXene Sc2CO produced by sputtering. Optik, 2020, 219, 165046.	1.4	13
68	Investigation of optical gain of GaInNAs/GaAs compressive-strained quantum wells. Physica B: Condensed Matter, 2003, 328, 264-270.	1.3	12
69	Improving the hole transport performance of perovskite solar cells through adjusting the mobility of the as-synthesized conjugated polymer. Journal of Materials Chemistry C, 2021, 9, 3421-3428.	2.7	12
70	Surfactant and impurity properties of antimony on GaAs and GaAs1â^'xNx on GaAs [100] by solid source molecular beam epitaxy. Thin Solid Films, 2005, 488, 56-61.	0.8	11
71	Growth of p-type GaAsâ^•AlGaAs(111) quantum well infrared photodetector using solid source molecular-beam epitaxy. Journal of Applied Physics, 2005, 98, 054905.	1.1	11
72	Theoretical Investigation of Excitonic Gain in <tex>\$hbox ZnOMg_xhbox Zn_1-xhbox O\$</tex> Strained Quantum Wells. IEEE Journal of Quantum Electronics, 2006, 42, 455-463.	1.0	11

#	Article	IF	CITATIONS
73	Ridge-width dependence on high-temperature continuous-wave operation of native oxide-confined InGaAsN triple-quantum-well lasers. IEEE Photonics Technology Letters, 2006, 18, 791-793.	1.3	11
74	Transparent conductive nanoporous aluminium mesh prepared by electrochemical anodizing. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2174-2178.	0.8	11
75	Theoretical comparison of optical and electronic properties of uniformly and randomly arranged nano-porous ultra-thin layers. Optics Express, 2015, 23, 17860.	1.7	11
76	Quantum spin Hall effect and topological phase transition in InNxBiySb1â^'xâ^'y/InSb quantum wells. New Journal of Physics, 2017, 19, 073031.	1.2	11
77	Simulation of high-efficiency resonant-cavity-enhanced GeSn single-photon avalanche photodiodes for sensing and optical quantum applications. IEEE Sensors Journal, 2021, , 1-1.	2.4	11
78	Electronic structures of the zinc-blende GaN/Ga1â^'xAlxN compressively strained superlattices and quantum wells. Superlattices and Microstructures, 1996, 19, 251-261.	1.4	10
79	Optical gain in zinc-blende strained quantum well laser. Solid State Communications, 1996, 98, 737-740.	0.9	10
80	X-ray reciprocal space mapping of strain relaxation in GaAs1â^'xNx on GaAs [100] by molecular-beam epitaxy. Journal of Applied Physics, 2003, 94, 3828-3833.	1.1	10
81	Fabrication of High-Performance InGaAsN Ridge Waveguide Lasers With Pulsed Anodic Oxidation. IEEE Photonics Technology Letters, 2004, 16, 2409-2411.	1.3	10
82	Analysis and optimization of the annealing mechanisms in (In)GaAsN on GaAs. Semiconductor Science and Technology, 2006, 21, 808-812.	1.0	10
83	High and electric field tunable Curie temperature in diluted magnetic semiconductor nanowires and nanoslabs. Applied Physics Letters, 2007, 90, 253110.	1.5	10
84	Theoretical study of quantum well infrared photodetectors with asymmetric well and barrier structures for broadband photodetection. Journal of Applied Physics, 2007, 101, 033114.	1.1	10
85	Giant and zero electron g factors of dilute nitride semiconductor nanowires. Applied Physics Letters, 2007, 90, 193111.	1.5	10
86	Improvement of GalnNAs pâ€iâ€n photodetector responsivity by antimony incorporation. Journal of Applied Physics, 2007, 101, 033122.	1.1	10
87	Comparative analysis of opto-electronic performance of aluminium and silver nano-porous and nano-wired layers. Optics Express, 2015, 23, 26794.	1.7	10
88	Electronic bandstructure and optical gain of lattice matched III-V dilute nitride bismide quantum wells for 1.55 <i>μ</i> m optical communication systems. Journal of Applied Physics, 2016, 120, .	1.1	10
89	Optical haze of randomly arranged silver nanowire transparent conductive films with wide range of nanowire diameters. AIP Advances, 2018, 8, 035201.	0.6	10
90	Effect of In and N incorporation on the properties of lattice-matched GaInNAs/GaAs grown by radio frequency plasma-assisted solid-source molecular beam epitaxy. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 2091.	1.6	9

#	Article	IF	CITATIONS
91	Temperature enhanced spontaneous emission rate spectra in GeSn/Ge quantum wells. Optical Materials Express, 2017, 7, 800.	1.6	9
92	Surface Depletion Effects in Bromide-Ligated Colloidal Cadmium Selenide Nanoplatelets: Toward Efficient Emission at High Temperature. Journal of Physical Chemistry Letters, 2021, 12, 9086-9093.	2.1	9
93	Hybridized surface lattice modes in intercalated 3-disk plasmonic crystals for high figure-of-merit plasmonic sensing. Nanoscale, 2021, 13, 4092-4102.	2.8	9
94	GalnNAs double-barrier quantum well infrared photodetector with the photodetection at $1.24\hat{l}^{1}\!/4$ m. Applied Physics Letters, 2007, 91, .	1.5	8
95	Origins of high radiative efficiency and wideband emission from InAs quantum dots. Applied Physics Letters, 2007, 91, .	1.5	8
96	Fabrication and modulation characteristics of 1.3 µm p-doped InAs quantum dot vertical cavity surface emitting lasers. Journal Physics D: Applied Physics, 2009, 42, 085117.	1.3	8
97	Low threshold current density, low resistance oxide-confined VCSEL fabricated by a dielectric-free approach. Applied Physics B: Lasers and Optics, 2010, 98, 773-778.	1.1	8
98	Orientation dependence of electronic structure and optical gain of (11N)-oriented III-V-N quantum wells. Journal of Applied Physics, 2013, 113, 083102.	1.1	8
99	GeSn-on-insulator dual-waveband resonant-cavity-enhanced photodetectors at the 2  µm and 1.55â€% optical communication bands. Optics Letters, 2021, 46, 3809.	‰â€‰Âµ 1.7%µ	m ₈
100	Design and Fabrication of Zinc Oxide Thin-Film Ridge Waveguides on Silicon Substrate With Ultraviolet Amplified Spontaneous Emission. IEEE Journal of Quantum Electronics, 2004, 40, 406-412.	1.0	7
101	Investigation of N incorporation in InGaAs and GaAs epilayers on GaAs using solid source molecular beam epitaxy. Journal of Crystal Growth, 2005, 275, 440-447.	0.7	7
102	Different temperature and pressure behavior of band edge and N-cluster emissions inGaAs0.973Sb0.022N0.005. Physical Review B, 2006, 74, .	1.1	7
103	Normal incidence silicon doped p-type GaAs/AlGaAs quantum-well infrared photodetector on (111)A substrate. Infrared Physics and Technology, 2007, 50, 119-123.	1.3	7
104	Band structures and optical gain of strained GaAsxP1â^'xâ^'yNy/GaP quantum wells. Applied Physics Letters, 2011, 98, 121112.	1.5	7
105	Design, Simulations, and Optimizations of Mid-infrared Multiple Quantum Well LEDs. Procedia Engineering, 2016, 140, 36-42.	1.2	7
106	Introducing Cations (Zn ²⁺ , Sn ²⁺ and Mg ²⁺) and Anions(Cl ^{â^'}) to Tune Mn Photoluminescence Intensity of Doped Perovskite Nanocrystals(CsPbCl ₃). ChemistrySelect, 2018, 3, 11986-11992.	0.7	7
107	Improved stability and efficiency of polymer-based selenium solar cells through the usage of tin(<scp>iv</scp>) oxide in the electron transport layers and the analysis of aging dynamics. Physical Chemistry Chemical Physics, 2020, 22, 14838-14845.	1.3	7
108	Employing Equivalent Circuit Models to Study the Performance of Seleniumâ€Based Solar Cells with Polymers as Hole Transport Layers. Small, 2021, 17, e2101226.	5.2	7

#	Article	IF	CITATIONS
109	Transferable single-layer GeSn nanomembrane resonant-cavity-enhanced photodetectors for 2 μm band optical communication and multi-spectral short-wave infrared sensing. Nanoscale, 2022, 14, 7341-7349.	2.8	7
110	First-principles calculations of band offsets. Journal of Physics Condensed Matter, 1998, 10, 577-580.	0.7	6
111	Reciprocal space mapping of GaNxAs1â^'x grown by RF plasma-assisted solid source molecular beam epitaxy. Journal of Crystal Growth, 2002, 243, 427-431.	0.7	6
112	Modeling Study of InSb Thin Film For Advanced III-V MOSFET Applications. , 2006, , .		6
113	Study of the interdiffusion effect on the band structures of Si1â^'xGexâ^•Si quantum wells. Journal of Applied Physics, 2006, 99, 076108.	1.1	6
114	Highly anisotropic Zeeman splittings of wurtzite Cd1â^'xMnxSe quantum dots. Applied Physics Letters, 2007, 91, 113108.	1.5	6
115	Pseudo-potential band structure calculation of InSb ultra-thin films and its application to assess the n-metal-oxide-semiconductor transistor performance. Semiconductor Science and Technology, 2008, 23, 025009.	1.0	6
116	Intersubband transitions in InGaAsN/GaAs quantum wells. Journal of Applied Physics, 2008, 104, 053119.	1.1	6
117	Microphotoluminescence investigation of InAs quantum dot active region in 1.3â€,μm vertical cavity surface emitting laser structure. Journal of Applied Physics, 2010, 108, 073111.	1.1	6
118	Highly Efficient Ultrathin Plasmonic Insulator-Metal-Insulator-Metal Solar Cell. Plasmonics, 2018, 13, 141-145.	1.8	6
119	The theoretical direct-band-gap optical gain of Germanium nanowires. Scientific Reports, 2020, 10, 32.	1.6	6
120	Suspended germanium membranes photodetector with tunable biaxial tensile strain and location-determined wavelength-selective photoresponsivity. Applied Physics Letters, 2021, 119, .	1.5	6
121	Band offsets at the InAlGaAs/InAlAs (001) heterostructures lattice matched to an InP substrate. Journal of Applied Physics, 1998, 83, 5852-5854.	1.1	5
122	Improved GaN[sub x]As[sub 1â^'x] quality grown by molecular beam epitaxy with dispersive nitrogen source. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 1364.	1.6	5
123	Analysis of optical gain and threshold current density of 980 nm InGaAs/GaAs compressively strained quantum well lasers. Computational Materials Science, 2004, 30, 296-302.	1.4	5
124	Electric field tunable electron g factor and high asymmetrical Stark effect in InAs1â^'xNx quantum dots. Applied Physics Letters, 2007, 90, 153103.	1.5	5
125	Rashba spin splitting of the minibands of coupled InAsâ^•GaAs pyramid quantum dots. Applied Physics Letters, 2008, 92, .	1.5	5
126	Dilute nitride based double-barrier quantum wells for intersubband absorption at 1.31 and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>1.55</mml:mn><mml:mtext>â€,</mml:mtext><mml:mi>μPhysical Review B, 2008, 77, .</mml:mi></mml:mrow></mml:math 	> <mmi:mte< td=""><td>ext>⁵m</td></mmi:mte<>	ext> ⁵ m

#	Article	IF	CITATIONS
127	1.3-\$mu\$m In(Ga)As Quantum-Dot VCSELs Fabricated by Dielectric-Free Approach With Surface-Relief Process. IEEE Photonics Technology Letters, 2011, 23, 91-93.	1.3	5
128	Effect of thickness on the electronic structure and optical properties of quasi two-dimensional perovskite CsPbBr3 nanoplatelets. Journal of Luminescence, 2021, 239, 118392.	1.5	5
129	The effect of rapid thermal annealing on GaAsSbN quantum-well and GaAsSbN bulk lattice matched to GaAs. , 0, , .		4
130	Highly anisotropic and electric field tunable Zeeman splittings in Mn-doped CdS nanowires. Physical Review B, 2007, 76, .	1.1	4
131	Interdiffusion effect on GaAsSbN/GaAs quantum well structure studied by 10-band k•p model. Thin Solid Films, 2007, 515, 4435-4440.	0.8	4
132	Room-temperature highly anisotropic ferromagnetism and uniaxial spin amplification in (In,Mn)As quantum dots. Applied Physics Letters, 2008, 92, 013129.	1.5	4
133	Electronic structure and optical gain of truncated InAs1â^'xNx /GaAs quantum dots. Superlattices and Microstructures, 2009, 46, 498-506.	1.4	4
134	Shape effects on the electronic structure and the optical gain of InAsN/GaAs nanostructures: From a quantum lens to a quantum ring. Superlattices and Microstructures, 2012, 52, 618-631.	1.4	4
135	Towards understanding the difference of optoelectronic performance between micro- and nanoscale metallic layers. Optical Materials Express, 2016, 6, 2655.	1.6	4
136	Towards theoretical analysis of optoelectronic performance of uniform and random metallic nanowire layers. Thin Solid Films, 2017, 626, 140-144.	0.8	4
137	Band Structure of Strained \$mathrm{Ge}_{1-x}~mathrm{Sn}_{x}\$ Alloy: A Full-Zone 30-Band \${k}cdot{p}\$ Model. IEEE Journal of Quantum Electronics, 2020, 56, 1-8.	1.0	4
138	Nearly total optical transmission of linearly polarized light through transparent electrode composed of GaSb monolithic high-contrast grating integrated with gold. Nanophotonics, 2021, 10, 3823-3830.	2.9	4
139	Theoretical design of mid-infrared interband cascade lasers in SiGeSn system. New Journal of Physics, 2020, 22, 083061.	1.2	4
140	Low threshold current density and high characteristic temperature narrow-stripe native oxide-confined 1.3-1¼m InGaAsN triple quantum well lasers. Optics Express, 2005, 13, 9045.	1.7	3
141	Interpretation of an anomalous peak in low-temperature photoluminescence measurements of bulk GaAs1â^'xNx on GaAs. Journal of Applied Physics, 2006, 99, 104908.	1.1	3
142	Interdiffusion in narrow InGaAsNâ^•GaAs quantum wells. Journal of Applied Physics, 2007, 101, 103111.	1.1	3
143	Effects of size and shape on electronic states of quantum dots. Optical and Quantum Electronics, 2007, 38, 981-991.	1.5	3
144	Influence of Oxide Aperture on the Properties of 1.3¿m InAs-GaAs Quantum-Dot VCSELs. , 2008, , .		3

#	Article	IF	CITATIONS
145	Self-heating effect in 1.3â€,μm p-doped InAs/GaAs quantum dot vertical cavity surface emitting lasers. Journal of Applied Physics, 2010, 107, 063107.	1.1	3
146	Electronic structure and optical gain of InAsPN/GaP(N) quantum dots. Superlattices and Microstructures, 2011, 49, 1-8.	1.4	3
147	Bulk inversion asymmetry effect on band structure and optical transition of a new class all-inorganic cubic perovskite nanoplatelet. AIP Advances, 2018, 8, .	0.6	3
148	Effect of Size on the Electronic Structure and Optical Properties of Cubic CsPbBr ₃ Quantum Dots. IEEE Journal of Quantum Electronics, 2020, 56, 1-7.	1.0	3
149	Seleniumâ€Based Solar Cell with Conjugated Polymers as Both Electron and Hole Transport Layers to Realize High Water Tolerance as well as Good Longâ€Term and Thermal Stability. Solar Rrl, 2020, 4, 2000425.	3.1	3
150	The Theoretical Optical Gain of Ge 1â^' x Sn x Nanowires. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900704.	1.2	3
151	Analysis of Optical Gain of Strained Wurtzite InxGa1-xN/GaN Quantum Well Lasers. Materials Research Society Symposia Proceedings, 1997, 482, 1097.	0.1	2
152	Co-doping carbon tetrabromide (CBr4) and antimony (Sb) on GaAs [100] in solid source molecular beam epitaxy. Journal of Crystal Growth, 2004, 267, 364-371.	0.7	2
153	Thermal excitation effects of photoluminescence of annealed GaInNAsâ^•GaAs quantum-well laser structures grown by plasma-assisted molecular-beam epitaxy. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 1434.	1.6	2
154	Infrared absorption and current–voltage characteristic of GaAs/AlGaAs multiple quantum wells on GaAs (111)A substrate grown by solid source molecular beam epitaxy. Journal of Crystal Growth, 2006, 288, 36-39.	0.7	2
155	Annealing effects on the optical properties of a GaInNAs double barrier quantum well infrared photodetector. Applied Physics Letters, 2007, 91, 041905.	1.5	2
156	1.31Âμm GaAs-based heterojunction p–i–n photodetectors using InGaAsNSb as the intrinsic layer grown by molecular beam epitaxy. Thin Solid Films, 2007, 515, 4441-4444.	0.8	2
157	Nanostructure model and optical properties of InAs/GaAs quantum dot in vertical cavity surface emitting lasers. Opto-electronics Review, 2011, 19, .	2.4	2
158	Theory of Direct-Transition Optical Gain in a Novel n ⁺ Doping Tensile-Strained Ge/GeSiSn-on-Si Quantum well Laser. Advanced Materials Research, 0, 746, 197-202.	0.3	2
159	Theoretical investigations of excitonic absorption in quasi two-dimensional CdSe nanoplatelets. , 2017, , .		2
160	GaNxAs1-x Growth by Molecular Beam Epitaxy with Dispersive Nitrogen. Materials Research Society Symposia Proceedings, 2001, 693, 345.	0.1	1
161	Study of High Nitrogen Compositions GaNAs and GaInNAs Material Quality by X-ray Diffraction and Photoluminescence. Materials Research Society Symposia Proceedings, 2001, 693, 643.	0.1	1
162	Studies of In and N composition effects on the optical properties and surface morphology of GaInNAs quantum dots grown by rf-plasma assisted MBE. , 0, , .		1

#	Article	IF	CITATIONS
163	Laser Power and Temperature Dependent Photoluminescence Characteristics of Annealed GalnNAs/GaAs Quantum Well. Materials Research Society Symposia Proceedings, 2003, 799, 169.	0.1	1
164	Characterizations of InzGa1â^'z As1â^'xâ^'yN xSby P-i-N structures grown on GaAs by molecular beam epitaxy. Journal of Materials Science: Materials in Electronics, 2005, 16, 301-307.	1.1	1
165	Comparison of Characteristic Temperature from Triple quantum Well and Single Quantum Well GalnNAs Ridge Waveguide Lasers. , 0, , .		1
166	Anisotropic Zeeman splitting and Stark shift of In1â^'yMnyAs1â^'xNx oblate quantum dots. Journal of Applied Physics, 2007, 102, .	1.1	1
167	Hole-mediated electric field tunable high Curie temperature in Mn-doped wurtzite ZnO nanowires. Applied Physics Letters, 2007, 91, .	1.5	1
168	Investigation of Intersubband Transition in GaAs/AlGaAs Quantum Well Infrared Photodetectors. Advanced Materials Research, 2007, 31, 105-107.	0.3	1
169	Analysis and Design of Antiresonant Reflecting Optical Waveguide Vertical-Cavity Surface-Emitting Lasers for Above-Threshold Operation. Journal of Lightwave Technology, 2008, 26, 1935-1942.	2.7	1
170	Design of Stable Single-Mode Chaotic Light Source Using Antiresonant Reflecting Optical Waveguide Vertical-Cavity Surface-Emitting Lasers. IEEE Journal of Quantum Electronics, 2008, 44, 338-345.	1.0	1
171	1.3-μm InAs quantum dot vertical cavity surface emitting lasers with planar electrode configuration. Proceedings of SPIE, 2008, , .	0.8	1
172	Investigation of high-speed modulaiton of 1.3μm InAs/InGaAs quantum dot VCSELs. , 2009, , .		1
173	Electronic structure and optical gain of InAsSbN/InAs quantum dots. Computational Materials Science, 2010, 49, S10-S14.	1.4	1
174	The natural valence band offset of dilute GaAs1â^'xNx and GaAs: The first-principles approach. Computational Materials Science, 2010, 49, S150-S152.	1.4	1
175	Band structures and optical gain of direct-bandgap tensile strained Ge/Ge <inf>1-X-Y</inf> Si <inf>X</inf> Sn <inf>Y</inf> type I quantum wells. , 2010, , .		1
176	Electronic structure of Ge/Si <inf>x</inf> Sn <inf>y</inf> Ge <inf>1−x−y</inf> quantum dots. , 2013, , .		1
177	Strain Profile and Size Dependent Electronic Band Structure of GeSn/SiSn Quantum Dots for Optoelectronic Application. , 2014, , .		1
178	Theoretical Model of Ge x Sn 1-x /Ge Quantum Well with Build-in Compressive Strain. Procedia Engineering, 2017, 215, 77-81.	1.2	1
179	Inverted Type-I CdS/CdSe Core/Crown colloidal quantum ring. , 2017, , .		1
180	GeSn/GaAs Hetero-Structure by Magnetron Sputtering. IEEE Journal of Quantum Electronics, 2020, 56, 1-5.	1.0	1

#	Article	IF	CITATIONS
181	Comparative study of U- and U4-split-ring resonator-based metasurfaces for sensing in near- and mid-infrared region. Journal of Optics (United Kingdom), 2020, 22, 125104.	1.0	1
182	Direct bandgap GeSn nanowires enabled with ultrahigh tension from harnessing intrinsic compressive strain. Applied Physics Letters, 2022, 120, .	1.5	1
183	Low threshold current density and high-quantum-efficiency 980-nm cw QW laser. , 2000, , .		0
184	<title>Theoretical design of low-threshold current density of InAlGaAs material system</title> . , 2000, , .		0
185	Electronic structures of Ga/sub 1-x/In/sub x/N/sub y/As/sub 1-y//GaAs compressively strained quantum wells. , 0, , .		0
186	Effect of rapid thermal annealing: red and blue shift in photoluminescence of GaNAs grown by RF plasma-assisted molecular beam epitaxy. Materials Research Society Symposia Proceedings, 2001, 692, 1.	0.1	0
187	Valence band structures and optical transitions of Ga1â^'xInxNyAs1â^'y/GaAs compressively strained quantum wells. Materials Science in Semiconductor Processing, 2001, 4, 563-566.	1.9	0
188	Analysis of optical gain of GaInNAs/GaAs compressive strained quantum well lasers. , 2001, , .		0
189	Ga(In)AsN growth by plasma-assisted molecular beam epitaxy towards 1.3 μm and 1.55 μm [lasers]. , 0, , .		0
190	Photoluminescence behaviour of GaInNAs quantum wells annealed at high temperature. , 0, , .		0
191	Intersubband absorption in GalnNAs/GaAsN quantum wells. , 0, , .		0
192	Characterization of GaInAsP/InP multiple quantum wells grown by solid source MBE for long wavelength infrared detection. , 2002, , .		0
193	Defects and Surfactant Action of Antimony on GaAs and GaAs1-xNx on GaAs [100] by Molecular Beam Epitaxy. Materials Research Society Symposia Proceedings, 2003, 799, 191.	0.1	0
194	Analysis of Photoluminescence Efficiency of Annealed GalnNAs Quantum Well Grown by Solid Source Molecular Beam Epitaxy. Materials Research Society Symposia Proceedings, 2003, 799, 13.	0.1	0
195	Growth dynamics and optimization of Ga(In)AsN/GaAs towards 1.3Âμm and 1.55Âμm. Applied Physics A: Materials Science and Processing, 2005, 80, 631-635.	1.1	0
196	Ridge Width Effect on the Characteristic Temperature of GaInNAs Triple Quantum Well Ridge Waveguide Lasers. , 0, , .		0
197	Influence of k - p formalisms on the band structure of In/sub x/Ga/sub 1-x/As/sub 1-y/N/sub y//GaAs quantum well. , 2005, , .		0
198	Free-Excitonic Gain in ZnO/MgxZn1-xO Strained Quantum Wells. , 2006, , .		0

#	Article	IF	CITATIONS
199	Design of InxGa1â^'xAs1â^'yNyâ^•AlAs quantum cascade structures for 3.4μm intersubband emission. Journal of Applied Physics, 2007, 101, 084504.	1.1	0
200	Band Structure and Optical Gain of 1.3 um GaAsSbN/GaAs Compressively Strained Quantum Well Laser. Advanced Materials Research, 2008, 31, 95-97.	0.3	0
201	Band structure investigation of strained Si1-xGex/Si coupled quantum wells. International Journal of Nanotechnology, 2007, 4, 431.	0.1	0
202	High Areal Density and Broadband Emission from InAs Quantum Dots for Superluminescent Diodes. , 2007, , .		0
203	Characterizations of a GaInNAs double-barrier quantum-well infrared photo-detector with the near-infrared photo-detection. , 2007, , .		0
204	Modeling of intersubband transitions in quantum well infrared photodetectors with complex potential profiles. Optical and Quantum Electronics, 2007, 38, 1101-1106.	1.5	0
205	Interwell coupling effect in Si/SiGe quantum wells grown by ultra high vacuum chemical vapor deposition. Nanoscale Research Letters, 2007, 2, 149-154.	3.1	0
206	Investigation of Temperature Characteristics for 1.3-¿m InAs Quantum Dot VCSELs with Planar Electrodes Configuration. , 2008, , .		0
207	Complicated effects of nitrogen on the structural and optical properties of InAs(N)/GaAs quantum dots. , 2008, , .		0
208	Fabrication and Characterization of 1.3-µm InAs Quantum-Dot VCSELs and Monolithic VCSEL Arrays. , 2009, , .		0
209	Band structures and optical gain of InGaAsN/GaAsN strained quantum wells under electric field. , 2012, , .		0
210	OPTICAL GAIN AND ENERGY BAND STRUCTURE OF PHOTONIC CRYSTAL VCSELs WITH HIGH-INDEX-CONTRAST SUBWAVELENGTH GRATINGS. Journal of Molecular and Engineering Materials, 2014, 02, 1440014.	0.9	0
211	Strain profile, electronic band structure and optical gain of self-assembled Ge quantum dots on SiGe virtual substrate. , 2014, , .		0
212	Optoelectronics of inverted type-I CdS/CdSe core/crown quantum ring. Journal of Applied Physics, 2017, 122, 163102.	1.1	0
213	Strain profile and size dependent electronic bandstructure of Type-I CdS/CdSe quantum ring. , 2017, , .		0
214	KdotPsoft: Modelling and Simulation of Semiconductors and Device Physics. Procedia Engineering, 2017, 215, 36-40.	1.2	0
215	Electronic Structure and Optical Gain of InNBiAs/InP Pyramidal Quantum Dots. Procedia Engineering, 2017, 215, 31-35.	1.2	0
216	Growth of Direct Bandgap Ge1â^'xSnx Alloys by Modified Magnetron Sputtering. IEEE Journal of Quantum Electronics, 2020, 56, 1-4.	1.0	0

#	Article	IF	CITATIONS
217	Virtual Special Issue Dedicated to the 10th International Conference on Materials for Advanced Technologies (ICMAT), Symposium C: Semiconductor Photonics. IEEE Journal of Quantum Electronics, 2020, 56, 1-3.	1.0	0