
Daniel Urda Muñoz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8455912/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	lgG glycan patterns are associated with type 2 diabetes in independent European populations. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 2240-2249.	1.1	93
2	Forward Noise Adjustment Scheme for Data Augmentation. , 2018, , .		74
3	Efficient Implementation of the Backpropagation Algorithm in FPGAs and Microcontrollers. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27, 1840-1850.	7.2	62
4	Towards a Reliable Comparison and Evaluation of Network Intrusion Detection Systems Based on Machine Learning Approaches. Applied Sciences (Switzerland), 2020, 10, 1775.	1.3	62
5	ESD Fabricated Thin Films of Spinel LiMn[sub 2]O[sub 4] for Lithium Microbatteries: I. Effects of Thickness. Journal of the Electrochemical Society, 2002, 149, A19.	1.3	59
6	Advanced Machine Learning techniques for fake news (online disinformation) detection: A systematic mapping study. Applied Soft Computing Journal, 2021, 101, 107050.	4.1	59
7	A permutation entropy-based EMD–ANN forecasting ensemble approach for wind speed prediction. Neural Computing and Applications, 2021, 33, 2369-2391.	3.2	53
8	Robust gene signatures from microarray data using genetic algorithms enriched with biological pathway keywords. Journal of Biomedical Informatics, 2014, 49, 32-44.	2.5	24
9	Application of genetic algorithms and constructive neural networks for the analysis of microarray cancer data. Theoretical Biology and Medical Modelling, 2014, 11, S7.	2.1	24
10	Deep Learning to Analyze RNA-Seq Gene Expression Data. Lecture Notes in Computer Science, 2017, , 50-59.	1.0	24
11	Addressing critical issues in the development of an Oncology Information System. International Journal of Medical Informatics, 2013, 82, 398-407.	1.6	21
12	A comparison of ranking filter methods applied to the estimation of NO2 concentrations in the Bay of Algeciras (Spain). Stochastic Environmental Research and Risk Assessment, 2021, 35, 1999-2019.	1.9	13
13	Artificial Neural Networks, Sequence-to-Sequence LSTMs, and Exogenous Variables as Analytical Tools for NO2 (Air Pollution) Forecasting: A Case Study in the Bay of Algeciras (Spain). Sensors, 2021, 21, 1770.	2.1	12
14	A machine learning-based forecasting system of perishable cargo flow in maritime transport. Neurocomputing, 2021, 452, 487-497.	3.5	11
15	A freight inspection volume forecasting approach using an aggregation/disaggregation procedure, machine learning and ensemble models. Neurocomputing, 2020, 391, 282-291.	3.5	9
16	BLASSO: integration of biological knowledge into a regularized linear model. BMC Systems Biology, 2018, 12, 94.	3.0	5
17	Combining feature engineering and feature selection to improve the prediction of methionine oxidation sites in proteins. Neural Computing and Applications, 2020, 32, 323-334.	3.2	5
18	A Clustering-Based Hybrid Support Vector Regression Model to Predict Container Volume at Seaport Sanitary Facilities. Applied Sciences (Switzerland), 2020, 10, 8326.	1.3	5

Daniel Urda Muñoz

#	Article	IF	CITATIONS
19	WIMP: Web server tool for missing data imputation. Computer Methods and Programs in Biomedicine, 2012, 108, 1247-1254.	2.6	4
20	Classification of high dimensional data using LASSO ensembles. , 2017, , .		4
21	A Genetic Algorithm and Neural Network Stacking Ensemble Approach to Improve NO2 Level Estimations. Lecture Notes in Computer Science, 2019, , 856-867.	1.0	4
22	A Deep Ensemble Neural Network Approach to Improve Predictions of Container Inspection Volume. Lecture Notes in Computer Science, 2019, , 806-817.	1.0	4
23	Machine learning models to search relevant genetic signatures in clinical context. , 2017, , .		3
24	Deep neural networks architecture driven by problem-specific information. Neural Computing and Applications, 2021, 33, 9403-9423.	3.2	3
25	Advanced Visualization of Intrusions in Flows by Means of Beta-Hebbian Learning. Logic Journal of the IGPL, 2022, 30, 1056-1073.	1.3	3
26	Hourly pollutants forecasting using a deep learning approach to obtain the AQI. Logic Journal of the IGPL, 0, , .	1.3	3
27	Assessing the Impact of Batch-Based Data Aggregation Techniques for Feature Engineering on Machine Learning-Based Network IDSs. Advances in Intelligent Systems and Computing, 2022, , 116-125.	0.5	2
28	Beta-Hebbian Learning for Visualizing Intrusions in Flows. Advances in Intelligent Systems and Computing, 2021, , 446-459.	0.5	2
29	A Constructive Neural Network to Predict Pitting Corrosion Status of Stainless Steel. Lecture Notes in Computer Science, 2013, , 88-95.	1.0	2
30	\$\$L_1\$\$-regularization Model Enriched with Biological Knowledge. Lecture Notes in Computer Science, 2017, , 579-590.	1.0	2
31	An Intelligent Visualisation Tool to Analyse the Sustainability of Road Transportation. Sustainability, 2022, 14, 777.	1.6	2
32	Advanced Online Survival Analysis Tool for Predictive Modelling in Clinical Data Science. PLoS ONE, 2016, 11, e0161135.	1.1	1
33	Ro-Ro Freight Forecasting Based on an ANN-SVR Hybrid Approach. Case of the Strait of Gibraltar. Lecture Notes in Computer Science, 2019, , 818-831.	1.0	1
34	MetODeep: A Deep Learning Approach for Prediction of Methionine Oxidation Sites in Proteins. , 2019, , .		1
35	Committee C-Mantec: A Probabilistic Constructive Neural Network. Lecture Notes in Computer Science, 2013, , 339-346.	1.0	1
36	Ro-Ro Freight Prediction Using a Hybrid Approach Based on Empirical Mode Decomposition, Permutation Entropy and Artificial Neural Networks. Lecture Notes in Computer Science, 2019, , 563-574.	1.0	1

#	Article	IF	CITATIONS
37	A Machine Learning Approach to Determine Abundance of Inclusions in Stainless Steel. Lecture Notes in Computer Science, 2019, , 504-513.	1.0	1
38	RECENT ADVANCES IN THE APPLICATION OF DATA SCIENCE TO INDUSTRIAL CYBERSECURITY. Dyna (Spain), 2021, 96, 231-232.	0.1	0
39	Advanced 3D Visualization of Android Malware Families. Advances in Intelligent Systems and Computing, 2022, , 167-177.	0.5	0
40	Use of q-values to Improve a Genetic Algorithm to Identify Robust Gene Signatures. Lecture Notes in Computer Science, 2015, , 199-206.	1.0	0
41	Trends and Patterns of International Student Mobility: The Case of Bachelor's Degrees in Computer Science at the University of Burgos. Advances in Intelligent Systems and Computing, 2021, , 142-153.	0.5	0
42	Learning Variables Structure Using Evolutionary Algorithms to Improve Predictive Performance. Communications in Computer and Information Science, 2020, , 58-68.	0.4	0