List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/845573/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An overview of microplastic and nanoplastic pollution in agroecosystems. Science of the Total Environment, 2018, 627, 1377-1388.	8.0	846
2	Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates. FEMS Microbiology Reviews, 2015, 39, 729-749.	8.6	530
3	Policy distortions, farm size, and the overuse of agricultural chemicals in China. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7010-7015.	7.1	455
4	Ammonia volatilization from synthetic fertilizers and its mitigation strategies: A global synthesis. Agriculture, Ecosystems and Environment, 2016, 232, 283-289.	5.3	383
5	Can knowledgeâ€based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A metaâ€analysis. Global Change Biology, 2017, 23, 1917-1925.	9.5	320
6	How Does Recycling of Livestock Manure in Agroecosystems Affect Crop Productivity, Reactive Nitrogen Losses, and Soil Carbon Balance?. Environmental Science & Technology, 2017, 51, 7450-7457.	10.0	297
7	Transfer of antibiotic resistance from manure-amended soils to vegetable microbiomes. Environment International, 2019, 130, 104912.	10.0	278
8	Tradeâ€offs between soil carbon sequestration and reactive nitrogen losses under straw return in global agroecosystems. Global Change Biology, 2018, 24, 5919-5932.	9.5	273
9	Long-Term Nickel Contamination Increases the Occurrence of Antibiotic Resistance Genes in Agricultural Soils. Environmental Science & amp; Technology, 2017, 51, 790-800.	10.0	240
10	Fieldâ€based evidence for copper contamination induced changes of antibiotic resistance in agricultural soils. Environmental Microbiology, 2016, 18, 3896-3909.	3.8	216
11	Effects of irrigation, fertilization and crop straw management on nitrous oxide and nitric oxide emissions from a wheat–maize rotation field in northern China. Agriculture, Ecosystems and Environment, 2011, 140, 226-233.	5.3	195
12	Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM _{2.5} air pollution. Science, 2021, 374, 758-762.	12.6	191
13	Using nitrification inhibitors to mitigate agricultural N ₂ O emission: a doubleâ€edged sword?. Global Change Biology, 2017, 23, 485-489.	9.5	180
14	Plastic pollution in croplands threatens longâ€ŧerm food security. Global Change Biology, 2020, 26, 3356-3367.	9.5	177
15	Temporal succession of soil antibiotic resistance genes following application of swine, cattle and poultry manures spiked with or without antibiotics. Environmental Pollution, 2017, 231, 1621-1632.	7.5	166
16	Spatial variability of shallow groundwater level, electrical conductivity and nitrate concentration, and risk assessment of nitrate contamination in North China Plain. Environment International, 2005, 31, 896-903.	10.0	164
17	Urbanization can benefit agricultural production with large-scale farming in China. Nature Food, 2021, 2, 183-191.	14.0	152
18	Dissimilatory nitrate reduction to ammonium and responsible microorganisms in two Chinese and Australian paddy soils. Soil Biology and Biochemistry, 2002, 34, 1131-1137.	8.8	150

#	Article	IF	CITATIONS
19	Comammox Nitrospira play an active role in nitrification of agricultural soils amended with nitrogen fertilizers. Soil Biology and Biochemistry, 2019, 138, 107609.	8.8	143
20	Influence of nitrification inhibitors on nitrification and nitrous oxide (N2O) emission from a clay loam soil fertilized with urea. Soil Biology and Biochemistry, 2010, 42, 660-664.	8.8	134
21	Adsorbent materials for ammonium and ammonia removal: A review. Journal of Cleaner Production, 2021, 283, 124611.	9.3	129
22	A spatially referenced water and nitrogen management model (WNMM) for (irrigated) intensive cropping systems in the North China Plain. Ecological Modelling, 2007, 203, 395-423.	2.5	126
23	N2O emissions from agricultural lands: a synthesis of simulation approaches. Plant and Soil, 2008, 309, 169-189.	3.7	126
24	Fertilizer nitrogen recovery efficiencies in crop production systems of China with and without consideration of the residual effect of nitrogen. Environmental Research Letters, 2014, 9, 095002.	5.2	115
25	Nitrous oxide and nitric oxide emissions from an irrigated cotton field in Northern China. Plant and Soil, 2010, 332, 123-134.	3.7	108
26	Temporal changes of antibiotic-resistance genes and bacterial communities in two contrasting soils treated with cattle manure. FEMS Microbiology Ecology, 2016, 92, fiv169.	2.7	108
27	Nitrogen footprints: Regional realities and options to reduce nitrogen loss to the environment. Ambio, 2017, 46, 129-142.	5.5	102
28	Nitrogen dynamics in grain crop and legume pasture systems under elevated atmospheric carbon dioxide concentration: A metaâ€analysis. Global Change Biology, 2012, 18, 2853-2859.	9.5	101
29	Microplastic pollution alters forest soil microbiome. Journal of Hazardous Materials, 2021, 409, 124606.	12.4	100
30	From the Vineyard to the Winery: How Microbial Ecology Drives Regional Distinctiveness of Wine. Frontiers in Microbiology, 2019, 10, 2679.	3.5	99
31	Long-term wheat response to nitrogen in a rainfed Mediterranean environment: Field data and simulation analysis. European Journal of Agronomy, 2010, 33, 132-138.	4.1	95
32	Societal benefits of halving agricultural ammonia emissions in China far exceed the abatement costs. Nature Communications, 2020, 11, 4357.	12.8	95
33	Effects of the Nitrification Inhibitor 3,4-Dimethylpyrazole Phosphate on Nitrification and Nitrifiers in Two Contrasting Agricultural Soils. Applied and Environmental Microbiology, 2016, 82, 5236-5248.	3.1	90
34	A quantitative evaluation system of soil productivity for intensive agriculture in China. Geoderma, 2004, 123, 319-331.	5.1	89
35	Four steps to food security for swelling cities. Nature, 2019, 566, 31-33.	27.8	89
36	Methodologies for estimating nitrogen transfer between legumes and companion species in agro-ecosystems: A review of 15N-enriched techniques. Soil Biology and Biochemistry, 2014, 73, 10-21.	8.8	87

#	Article	IF	CITATIONS
37	The potential for carbon sequestration in Australian agricultural soils is technically and economically limited. Scientific Reports, 2013, 3, 2179.	3.3	83
38	Impacts of reclaimed water irrigation on soil antibiotic resistome in urban parks of Victoria, Australia. Environmental Pollution, 2016, 211, 48-57.	7.5	78
39	Nitrifierâ€induced denitrification is an important source of soil nitrous oxide and can be inhibited by a nitrification inhibitor 3,4â€dimethylpyrazole phosphate. Environmental Microbiology, 2017, 19, 4851-4865.	3.8	75
40	Fertilizer overuse in Chinese smallholders due to lack of fixed inputs. Journal of Environmental Management, 2021, 293, 112913.	7.8	73
41	Carbon and nitrogen partitioning of wheat and field pea grown with two nitrogen levels under elevated CO2. Plant and Soil, 2015, 391, 367-382.	3.7	71
42	The large-scale distribution of ammonia oxidizers in paddy soils is driven by soil pH, geographic distance, and climatic factors. Frontiers in Microbiology, 2015, 6, 938.	3.5	70
43	The Fungal Microbiome Is an Important Component of Vineyard Ecosystems and Correlates with Regional Distinctiveness of Wine. MSphere, 2020, 5, .	2.9	70
44	Spatial variability of nitrous oxide emissions from an Australian irrigated dairy pasture. Plant and Soil, 2008, 309, 77-88.	3.7	69
45	The effect of temperature and moisture on the source of N2O and contributions from ammonia oxidizers in an agricultural soil. Biology and Fertility of Soils, 2017, 53, 141-152.	4.3	69
46	Comparison of three modeling approaches for simulating denitrification and nitrous oxide emissions from loam-textured arable soils. Global Biogeochemical Cycles, 2005, 19, .	4.9	67
47	Determination and mitigation of ammonia loss from urea applied to winter wheat with N-(n-butyl) thiophosphorictriamide. Agriculture, Ecosystems and Environment, 2010, 137, 261-266.	5.3	66
48	Long-term effects of elevated CO2 on carbon and nitrogen functional capacity of microbial communities in three contrasting soils. Soil Biology and Biochemistry, 2016, 97, 157-167.	8.8	65
49	Effects of below-ground nitrogen on N balances of field-grown fababean, chickpea, and barley. Australian Journal of Agricultural Research, 2003, 54, 333.	1.5	64
50	Dissimilatory nitrate reduction to ammonium dominates nitrate reduction in long-term low nitrogen fertilized rice paddies. Soil Biology and Biochemistry, 2019, 131, 149-156.	8.8	64
51	Nitrification Is a Primary Driver of Nitrous Oxide Production in Laboratory Microcosms from Different Land-Use Soils. Frontiers in Microbiology, 2016, 7, 1373.	3.5	62
52	Simulation of nitrate leaching under irrigated maize on sandy soil in desert oasis in Inner Mongolia, China. Agricultural Water Management, 2008, 95, 1180-1188.	5.6	61
53	Niche differentiation of clade A comammox Nitrospira and canonical ammonia oxidizers in selected forest soils. Soil Biology and Biochemistry, 2020, 149, 107925.	8.8	59
54	Measurement of greenhouse gas emissions from Australian feedlot beef production using open-path spectroscopy and atmospheric dispersion modelling. Australian Journal of Experimental Agriculture, 2008, 48, 244.	1.0	57

#	Article	IF	CITATIONS
55	Fate and efficiency of 15N-labelled slow- and controlled-release fertilizers. Nutrient Cycling in Agroecosystems, 2015, 102, 167-178.	2.2	57
56	Effects of 3,4-dimethylpyrazole phosphate (DMPP) on nitrification and the abundance and community composition of soil ammonia oxidizers in three land uses. Biology and Fertility of Soils, 2016, 52, 927-939.	4.3	56
57	Salinity as a predominant factor modulating the distribution patterns of antibiotic resistance genes in ocean and river beach soils. Science of the Total Environment, 2019, 668, 193-203.	8.0	54
58	The effect of nitrification inhibitors in reducing nitrification and the ammonia oxidizer population in three contrasting soils. Journal of Soils and Sediments, 2015, 15, 1113-1118.	3.0	53
59	Ensuring planetary survival: the centrality of organic carbon in balancing the multifunctional nature of soils. Critical Reviews in Environmental Science and Technology, 2022, 52, 4308-4324.	12.8	52
60	Beef and coal are key drivers of Australia's high nitrogen footprint. Scientific Reports, 2016, 6, 39644.	3.3	51
61	Use of the Canopy Chlorophyl Content Index (CCCI) for Remote Estimation of Wheat Nitrogen Content in Rainfed Environments. Agronomy Journal, 2011, 103, 1597-1603.	1.8	48
62	Using urease and nitrification inhibitors to decrease ammonia and nitrous oxide emissions and improve productivity in a subtropical pasture. Science of the Total Environment, 2018, 644, 1531-1535.	8.0	48
63	Modeling Nitrate Leaching and Optimizing Water and Nitrogen Management under Irrigated Maize in Desert Oases in Northwestern China. Journal of Environmental Quality, 2010, 39, 667-677.	2.0	47
64	Influence of urea fertiliser formulation, urease inhibitor and season on ammonia loss from ryegrass. Nutrient Cycling in Agroecosystems, 2013, 95, 175-185.	2.2	47
65	Simultaneous quantification of N ₂ , NH ₃ and N ₂ O emissions from a flooded paddy field under different N fertilization regimes. Global Change Biology, 2020, 26, 2292-2303.	9.5	47
66	Balancing the economic, social and environmental dimensions of agro-ecosystems: An integrated modeling approach. Agriculture, Ecosystems and Environment, 2009, 131, 263-273.	5.3	46
67	Diversity and dynamics of fungi during spontaneous fermentations and association with unique aroma profiles in wine. International Journal of Food Microbiology, 2021, 338, 108983.	4.7	46
68	Influence of temperature and moisture on the relative contributions of heterotrophic and autotrophic nitrification to gross nitrification in an acid cropping soil. Journal of Soils and Sediments, 2015, 15, 2304-2309.	3.0	44
69	Effects of lignite application on ammonia and nitrous oxide emissions from cattle pens. Science of the Total Environment, 2016, 565, 148-154.	8.0	44
70	An examination of physical and chemical properties of urban biochar for use as growing media substrate. Biomass and Bioenergy, 2016, 84, 49-58.	5.7	44
71	Nitrogen Addition Decreases Dissimilatory Nitrate Reduction to Ammonium in Rice Paddies. Applied and Environmental Microbiology, 2018, 84, .	3.1	39
72	Release of dinitrogen from nitrite and sulphamic acid for isotope ratio analysis of soil extracts containing nitrogen-15 labelled nitrite and nitrate. Analyst, The, 1990, 115, 365.	3.5	38

#	Article	IF	CITATIONS
73	A new cost-effective method to mitigate ammonia loss from intensive cattle feedlots: application of lignite. Scientific Reports, 2015, 5, 16689.	3.3	38
74	Growth of comammox Nitrospira is inhibited by nitrification inhibitors in agricultural soils. Journal of Soils and Sediments, 2020, 20, 621-628.	3.0	38
75	Elevated CO2 negates O3 impacts on terrestrial carbon and nitrogen cycles. One Earth, 2021, 4, 1752-1763.	6.8	38
76	Direct and indirect greenhouse gas emissions from two intensive vegetable farms applied with a nitrification inhibitor. Soil Biology and Biochemistry, 2018, 116, 48-51.	8.8	37
77	15N2 as a tracer of biological N2 fixation: A 75-year retrospective. Soil Biology and Biochemistry, 2017, 106, 36-50.	8.8	36
78	A critique of the paper â€~Soil carbon 4 per mille' by Minasny et al. (2017). Geoderma, 2018, 309, 115-117.	5.1	36
79	Enhanced nitrogen retention by lignite during poultry litter composting. Journal of Cleaner Production, 2020, 277, 122422.	9.3	36
80	Policy incentives for reducing nitrate leaching from intensive agriculture in desert oases of Alxa, Inner Mongolia, China. Agricultural Water Management, 2009, 96, 1114-1119.	5.6	35
81	Comparison of different methods for the measurement of ammonia volatilization after urea application in Henan Province, China. Journal of Plant Nutrition and Soil Science, 2008, 171, 361-369.	1.9	34
82	Cleaning up nitrogen pollution may reduce future carbon sinks. Global Environmental Change, 2018, 48, 56-66.	7.8	33
83	Does phosphorus stimulate the effect of elevated [CO2] on growth and symbiotic nitrogen fixation of grain and pasture legumes?. Crop and Pasture Science, 2012, 63, 53.	1.5	32
84	Effect of elevated carbon dioxide on growth and nitrogen fixation of two soybean cultivars in northern China. Biology and Fertility of Soils, 2012, 48, 603-606.	4.3	32
85	Optimizing nitrogen fertilization rate to enhance soil carbon storage and decrease nitrogen pollution in paddy ecosystems with simultaneous straw incorporation. Agriculture, Ecosystems and Environment, 2020, 298, 106968.	5.3	32
86	Modification of naturally abundant resources for remediation of potentially toxic elements: A review. Journal of Hazardous Materials, 2022, 421, 126755.	12.4	32
87	A global synthesis of soil denitrification: Driving factors and mitigation strategies. Agriculture, Ecosystems and Environment, 2022, 327, 107850.	5.3	32
88	The effect of increased atmospheric carbon dioxide concentration on emissions of nitrous oxide, carbon dioxide and methane from a wheat field in a semi-arid environment in northern China. Soil Biology and Biochemistry, 2011, 43, 458-461.	8.8	31
89	A Snapshot of Greenhouse Gas Emissions from a Cattle Feedlot. Journal of Environmental Quality, 2015, 44, 1974-1978.	2.0	31
90	Nitrogen demand and the recovery of 15N-labelled fertilizer in wheat grown under elevated carbon dioxide in southern Australia. Nutrient Cycling in Agroecosystems, 2012, 92, 133-144.	2.2	30

#	Article	IF	CITATIONS
91	Data filtering for inverse dispersion emission calculations. Agricultural and Forest Meteorology, 2014, 198-199, 1-6.	4.8	30
92	Ammonia deposition in the neighbourhood of an intensive cattle feedlot in Victoria, Australia. Scientific Reports, 2016, 6, 32793.	3.3	30
93	Free-air CO ₂ enrichment (FACE) reduces the inhibitory effect of soil nitrate on N ₂ fixation of <i>Pisum sativum</i> . Annals of Botany, 2016, 117, 177-185.	2.9	30
94	Simulation of N2O emissions from rain-fed wheat and the impact of climate variation in southeastern Australia. Plant and Soil, 2008, 309, 239-251.	3.7	29
95	Effect of Australian zeolite on methane production and ammonium removal during anaerobic digestion of swine manure. Journal of Environmental Chemical Engineering, 2018, 6, 1233-1241.	6.7	29
96	Lignite effects on NH3, N2O, CO2 and CH4 emissions during composting of manure. Journal of Environmental Management, 2020, 271, 110960.	7.8	29
97	Pyrolysis of urban waste streams: Their potential use as horticultural media. Journal of Analytical and Applied Pyrolysis, 2015, 112, 105-112.	5.5	28
98	Effect of fertilization on nitrogen losses through surface runoffs in Chinese farmlands: A meta-analysis. Science of the Total Environment, 2021, 793, 148554.	8.0	28
99	Can Contingent Valuation be Used to Measure the in Situ Value of Groundwater on the North China Plain?. Water Resources Management, 2007, 21, 1735-1749.	3.9	27
100	Toward a Generic Analytical Framework for Sustainable Nitrogen Management: Application for China. Environmental Science & Technology, 2019, 53, 1109-1118.	10.0	27
101	Reactive nitrogen spatial intensity (NrSI): A new indicator for environmental sustainability. Global Environmental Change, 2018, 52, 101-107.	7.8	25
102	Manure Application Did Not Enrich Antibiotic Resistance Genes in Root Endophytic Bacterial Microbiota of Cherry Radish Plants. Applied and Environmental Microbiology, 2020, 86, .	3.1	25
103	A Credit System to Solve Agricultural Nitrogen Pollution. Innovation(China), 2021, 2, 100079.	9.1	25
104	Niche specialization of comammox Nitrospira clade A in terrestrial ecosystems. Soil Biology and Biochemistry, 2021, 156, 108231.	8.8	25
105	Evaluation of a polyolefin coated urea (Meister) as a fertilizer for irrigated cotton. Nutrient Cycling in Agroecosystems, 2008, 81, 245-254.	2.2	24
106	Spatial variability of soil nutrients and GIS-based nutrient management in Yongji County, China. International Journal of Geographical Information Science, 2010, 24, 965-981.	4.8	24
107	A combination of biological activity and the nitrate form of nitrogen can be used to ameliorate subsurface soil acidity under dryland wheat farming. Plant and Soil, 2011, 348, 155-166.	3.7	24
108	Using airborne technology to quantify and apportion emissions of CH4 and NH3 from feedlots. Animal Production Science, 2016, 56, 190.	1.3	24

#	Article	IF	CITATIONS
109	Gas emissions during cattle manure composting and stockpiling. Journal of Environmental Quality, 2020, 49, 228-235.	2.0	24
110	An overview of contemporary advances in the usage of 15N natural abundance (δ15N) as a tracer of agro-ecosystem N cycle processes that impact the environment. Agriculture, Ecosystems and Environment, 2019, 283, 106570.	5.3	23
111	Simulating response of N ₂ O emissions to fertiliser N application and climatic variability from a rainâ€fed and wheatâ€cropped soil in Western Australia. Journal of the Science of Food and Agriculture, 2012, 92, 1130-1143.	3.5	22
112	On the usage of absolute (x) and relative (Î) values of 15N abundance. Soil Biology and Biochemistry, 2015, 85, 51-53.	8.8	22
113	Effects of the nitrification inhibitor acetylene on nitrous oxide emissions and ammonia-oxidizing microorganisms of different agricultural soils under laboratory incubation conditions. Applied Soil Ecology, 2017, 119, 80-90.	4.3	22
114	Enhanced efficiency fertilisers reduce nitrous oxide emissions and improve fertiliser 15N recovery in a Southern Australian pasture. Science of the Total Environment, 2020, 699, 134147.	8.0	22
115	Nitrogen leaching in an upland cropping system on an acid soil in subtropical China: lysimeter measurements and simulation. Nutrient Cycling in Agroecosystems, 2008, 81, 291-303.	2.2	20
116	Effects of nitrification inhibitors on gross N nitrification rate, ammonia oxidizers, and N2O production under different temperatures in two pasture soils. Environmental Science and Pollution Research, 2018, 25, 28344-28354.	5.3	20
117	Lignite addition during anaerobic digestion of ammonium rich swine manure enhances biogas production. Journal of Environmental Chemical Engineering, 2021, 9, 104669.	6.7	20
118	Use of open-path FTIR and inverse dispersion technique to quantify gaseous nitrogen loss from an intensive vegetable production site. Atmospheric Environment, 2014, 94, 687-691.	4.1	19
119	Mathematical modeling for improved greenhouse gas balances, agroâ€ecosystems, and policy development: lessons from the Australian experience. Wiley Interdisciplinary Reviews: Climate Change, 2014, 5, 735-752.	8.1	19
120	Nitrate production is mainly heterotrophic in an acid dairy soil with high organic content in Australia. Biology and Fertility of Soils, 2015, 51, 891-896.	4.3	19
121	Lignite as additives accelerates the removal of antibiotic resistance genes during poultry litter composting. Bioresource Technology, 2020, 315, 123841.	9.6	19
122	Does elevated atmospheric carbon dioxide concentration increase wheat nitrogen demand and recovery of nitrogen applied at stem elongation?. Agriculture, Ecosystems and Environment, 2012, 155, 142-146.	5.3	18
123	Evaluating an eddy covariance technique to estimate point-source emissions and its potential application to grazing cattle. Agricultural and Forest Meteorology, 2017, 234-235, 164-171.	4.8	18
124	Biogas Improvement by Adding Australian Zeolite During the Anaerobic Digestion of C:N Ratio Adjusted Swine Manure. Waste and Biomass Valorization, 2019, 10, 1883-1887.	3.4	18
125	An empirical analysis of the use of agricultural mobile applications among smallholder farmers in Myanmar. Electronic Journal of Information Systems in Developing Countries, 2021, 87, e12159.	1.4	18
126	Simulation of Nitrous Oxide Emission and Mineralized Nitrogen under Different Straw Retention Conditions Using a Denitrification–Decomposition Model. Clean - Soil, Air, Water, 2015, 43, 577-583.	1.1	17

#	Article	IF	CITATIONS
127	Lignite ammonia adsorption and surface chemistry after dewatering. Separation and Purification Technology, 2020, 253, 117483.	7.9	17
128	Measurement and mitigation of nitrous oxide emissions from a high nitrogen input vegetable system. Scientific Reports, 2015, 5, 8208.	3.3	16
129	Decreasing ammonia loss from an Australian pasture with the use of enhanced efficiency fertilizers. Agriculture, Ecosystems and Environment, 2019, 283, 106553.	5.3	16
130	New approach for predicting nitrification and its fraction of N ₂ O emissions in global terrestrial ecosystems. Environmental Research Letters, 2021, 16, 034053.	5.2	16
131	Developing a Technique to Quantify Heterotrophic and Autotrophic Nitrification in Acidic Pasture Soils. Communications in Soil Science and Plant Analysis, 2007, 38, 2309-2321.	1.4	15
132	N2 fixation by faba bean (Vicia faba L.) in a gypsum-amended sodic soil. Biology and Fertility of Soils, 2009, 45, 329-333.	4.3	15
133	Gaseous emissions from an intensive vegetable farm measured with slant-path FTIR technique. Agricultural and Forest Meteorology, 2018, 258, 50-55.	4.8	15
134	Stimulation of heterotrophic nitrification and N2O production, inhibition of autotrophic nitrification in soil by adding readily degradable carbon. Journal of Soils and Sediments, 2020, 20, 81-90.	3.0	15
135	Effect of long term fertilization management strategies on methane emissions and rice yield. Science of the Total Environment, 2020, 725, 138261.	8.0	15
136	Soil-Food-Environment-Health Nexus for Sustainable Development. Research, 2021, 2021, 9804807.	5.7	15
137	Stochastic simulation of water drainage at the field scale and its application to irrigation management. Agricultural Water Management, 2007, 89, 123-130.	5.6	14
138	The effect of elevated atmospheric carbon dioxide concentration on the contribution of residual legume and fertilizer nitrogen to a subsequent wheat crop. Plant and Soil, 2013, 364, 81-91.	3.7	14
139	The nitrogen footprint for an Australian university: Institutional change for corporate sustainability. Journal of Cleaner Production, 2018, 197, 534-541.	9.3	14
140	Dissimilatory nitrate ammonification and N2 fixation helps maintain nitrogen nutrition in resource-limited rice paddies. Biology and Fertility of Soils, 2021, 57, 107-115.	4.3	14
141	Predicting the Ratio of Nitrification to Immobilization to Reflect the Potential Risk of Nitrogen Loss Worldwide. Environmental Science & Technology, 2021, 55, 7721-7730.	10.0	14
142	Effect of topography on farm-scale spatial variation in extreme temperatures in the Southern Mallee of Victoria, Australia. Theoretical and Applied Climatology, 2011, 103, 533-542.	2.8	13
143	Analysis of factors controlling soil N2O emission by principal component and path analysis method. Environmental Earth Sciences, 2014, 72, 1511-1517.	2.7	13
144	Evaluating Dispersion Modeling Options to Estimate Methane Emissions from Grazing Beef Cattle. Journal of Environmental Quality, 2015, 44, 97-102.	2.0	13

#	Article	IF	CITATIONS
145	Substituted 1,2,3-triazoles: a new class of nitrification inhibitors. Scientific Reports, 2021, 11, 14980.	3.3	13
146	Remote estimation of chlorophyll on two wheat cultivars in two rainfed environments. Crop and Pasture Science, 2011, 62, 269.	1.5	12
147	Performance of open-path lasers and Fourier transform infrared spectroscopic systems in agriculture emissions research. Atmospheric Measurement Techniques, 2022, 15, 3593-3610.	3.1	12
148	Comparison of Sequential Indicator Simulation and Transition Probability Indicator Simulation Used to Model Clay Content in Microscale Surface Soil. Soil Science, 2009, 174, 395-402.	0.9	11
149	15N methodologies for quantifying the response of N2-fixing associations to elevated [CO2]: A review. Science of the Total Environment, 2016, 571, 624-632.	8.0	11
150	Uncertainty of nitrogen budget in China. Environmental Pollution, 2021, 286, 117216.	7.5	11
151	Optimizing spikelet fertilizer input in irrigated rice system can reduce nitrous oxide emission while increase grain yield. Agriculture, Ecosystems and Environment, 2022, 324, 107737.	5.3	11
152	Farm-scale zoning of extreme temperatures in Southern Mallee, Victoria, Australia. Biosystems Engineering, 2010, 105, 198-204.	4.3	10
153	Spatial variations in soil and plant nitrogen levels caused by ammonia deposition near a cattle feedlot. Atmospheric Environment, 2018, 176, 120-127.	4.1	10
154	Residue decomposition and soil carbon priming in three contrasting soils previously exposed to elevated CO2. Biology and Fertility of Soils, 2019, 55, 17-29.	4.3	10
155	Lignite Improved the Quality of Composted Manure and Mitigated Emissions of Ammonia and Greenhouse Gases during Forced Aeration Composting. Sustainability, 2020, 12, 10528.	3.2	10
156	Modified lignite and black coal reduce ammonia volatilization from cattle manure. Journal of Environmental Management, 2022, 301, 113807.	7.8	10
157	Assembly of Metal–Phenolic Networks on Waterâ€6oluble Substrates in Nonaqueous Media. Advanced Functional Materials, 2022, 32, .	14.9	10
158	Gaseous losses of fertilizer nitrogen from a citrus orchard in the red soil hilly region of Southeast China. Soil Science and Plant Nutrition, 2017, 63, 419-425.	1.9	9
159	Removal of excess nutrients by Australian zeolite during anaerobic digestion of swine manure. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2018, 53, 362-372.	1.7	9
160	Applicability of Eddy Covariance to Estimate Methane Emissions from Grazing Cattle. Journal of Environmental Quality, 2018, 47, 54-61.	2.0	9
161	Influence of chlorothalonil and carbendazim fungicides on the transformation processes of urea nitrogen and related microbial populations in soil. Environmental Science and Pollution Research, 2019, 26, 31133-31141.	5.3	9
162	Comparison of slant open-path flux gradient and static closed chamber techniques to measure soil N ₂ O emissions. Atmospheric Measurement Techniques, 2019, 12, 1095-1102.	3.1	9

#	Article	IF	CITATIONS
163	The Warming Climate Aggravates Atmospheric Nitrogen Pollution in Australia. Research, 2021, 2021, 9804583.	5.7	9
164	Effects of fermented organic fertilizer application on soil N2O emission under the vegetable rotation in polyhouse. Environmental Research, 2021, 200, 111491.	7.5	9
165	External-source contamination during extraction—distillation in isotope-ratio analysis of soil inorganic nitrogen. Analytica Chimica Acta, 1991, 245, 49-55.	5.4	8
166	Simulation of N2O emissions from an irrigated dairy pasture treated with urea and urine in Southeastern Australia. Agriculture, Ecosystems and Environment, 2010, 136, 333-342.	5.3	8
167	Ammonium removal from high-strength aqueous solutions by Australian zeolite. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2016, 51, 1-12.	1.7	8
168	Tracing the dynamics of animal excreta N in the soil-plant-atmosphere continuum using 15N enrichment. Advances in Agronomy, 2020, , 187-247.	5.2	8
169	Modification of a spatially referenced crop model to simulate the effect of spatial pattern of subsoil salinity. Computers and Electronics in Agriculture, 2010, 74, 313-320.	7.7	7
170	Crop residue incorporation negates the positive effect of elevated atmospheric carbon dioxide concentration on wheat productivity and fertilizer nitrogen recovery. Plant and Soil, 2013, 366, 551-561.	3.7	7
171	Increased microbial activity under elevated [CO2] does not enhance residue decomposition in a semi-arid cropping system in Australia. Soil Biology and Biochemistry, 2014, 72, 97-99.	8.8	7
172	The fate of urea nitrogen applied to a vegetable crop rotation system. Nutrient Cycling in Agroecosystems, 2015, 103, 279-292.	2.2	7
173	Elevated CO2 induced rhizosphere effects on the decomposition and N recovery from crop residues. Plant and Soil, 2016, 408, 55-71.	3.7	7
174	Correlations of methane and carbon dioxide concentrations from feedlot cattle as a predictor of methane emissions. Animal Production Science, 2016, 56, 108.	1.3	7
175	Comparing emissions from a cattle pen as measured by two micrometeorological techniques. Environmental Pollution, 2017, 230, 584-588.	7.5	7
176	Modification of bituminous coal by air oxidation to increase ammonia capture. Journal of Analytical and Applied Pyrolysis, 2020, 151, 104930.	5.5	7
177	What are the social costs and benefits of lignite application to reduce ammonia emissions in intensive feedlot?. Journal of Environmental Management, 2020, 269, 110821.	7.8	7
178	From generation to treatment: A systematic reactive nitrogen flow assessment of solid waste in China. Journal of Cleaner Production, 2020, 259, 121127.	9.3	7
179	Opportunities to improve nitrogen use efficiency in an intensive vegetable system without compromising yield. Journal of Environmental Quality, 2021, 50, 791-798.	2.0	7
180	Lignite, dewatered lignite and modified subbituminous coal reduce nitrogen loss from broiler litter. Waste Management, 2021, 136, 113-121.	7.4	7

#	Article	IF	CITATIONS
181	Identifying Potential for Decision Support Tools through Farm Systems Typology Analysis Coupled with WParticipatory Research: A Case for Smallholder Farmers in Myanmar. Agriculture (Switzerland), 2021, 11, 516.	3.1	6
182	Human-caused increases in reactive nitrogen burial in sediment of global lakes. Innovation(China), 2021, 2, 100158.	9.1	6
183	Productivity and water use of grazed subsurface drip irrigated perennial pasture in Australia. Irrigation Science, 2015, 33, 141-152.	2.8	5
184	Ozone Pollution Increases CO ₂ and N ₂ O Emissions in Ozoneâ€sensitive Wheat System. Agronomy Journal, 2018, 110, 496-502.	1.8	5
185	Mechanisms behind soil N dynamics following cover restoration in degraded land in subtropical China. Journal of Soils and Sediments, 2020, 20, 1897-1905.	3.0	5
186	Quantitative estimation of carbon dynamics in terrestrial ecosystems using natural variations in the δ13C abundance of soils and biota. Advances in Agronomy, 2021, , 63-104.	5.2	5
187	Application of the Denitrification-Decomposition Model to Predict Carbon Dioxide Emissions under Alternative Straw Retention Methods. Scientific World Journal, The, 2013, 2013, 1-7.	2.1	4
188	¹³ C isotopic fractionation during biodegradation of agricultural wastes. Isotopes in Environmental and Health Studies, 2015, 51, 201-213.	1.0	4
189	Non-interference measurement of CH4, N2O and NH3 emissions from cattle. Animal Production Science, 2016, 56, 1496.	1.3	4
190	Developing an anaerobic digester with external Zeolite filled column for enhancing methane production from swine manure – A feasibility study. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2018, 53, 751-760.	1.5	4
191	The Contribution and Mitigation Potential of Reactive Nitrogen Emissions from Industrial Parks in China Cannot Be Ignored. Environmental Science and Technology Letters, 2020, 7, 82-88.	8.7	4
192	Recommended vs. Practice: Smallholder Fertilizer Decisions in Central Myanmar. Agriculture (Switzerland), 2021, 11, 65.	3.1	4
193	Beef cattle methane emissions measured with tracer-ratio and inverse dispersion modelling techniques. Atmospheric Measurement Techniques, 2021, 14, 3469-3479.	3.1	4
194	Assessment of nitrogen hotspots induced by cropping systems in the Bohai Rim region in China by integrating DNDC modelling and the reactive nitrogen spatial intensity (NrSI) framework. Environmental Research Letters, 2020, 15, 105008.	5.2	4
195	Nitrous oxide production pathways in Australian forest soils. Geoderma, 2022, 420, 115871.	5.1	4
196	Effect of lignite amendment on carbon and nitrogen mineralization from raw and composted manure during incubation with soil. Pedosphere, 2022, 32, 785-795.	4.0	4
197	Surface modification of coal tailings by thermal air oxidation for ammonia capture. Journal of Cleaner Production, 2022, 362, 132525.	9.3	4
198	Pursuing sustainable nitrogen management following the "5 Ps―principles: Production, People, Planet, Policy and Partnerships. Global Environmental Change, 2021, 70, 102346.	7.8	3

#	Article	IF	CITATIONS
199	Gaseous Nitrogen Emissions from Australian Cattle Feedlots. , 2014, , 23-29.		3
200	Benefits from enhanced-efficiency nitrogen fertilisers in rainfed temperate pastures are seasonally driven. Soil Research, 2022, 60, 147-157.	1.1	3
201	Mitigating soil greenhouseâ€gas emissions from landâ€use change in tropical peatlands. Frontiers in Ecology and the Environment, 2022, 20, 352-360.	4.0	3
202	A short-term study of wheat grain protein response to post-anthesis foliar nitrogen application under elevated CO 2 and supplementary irrigation. Journal of Cereal Science, 2017, 75, 135-137.	3.7	2
203	Nitrogen transformation rates and N2O producing pathways in two pasture soils. Journal of Soils and Sediments, 2018, 18, 2970-2979.	3.0	2
204	The amount, but not the proportion, of N2 fixation and transfers to neighboring plants varies across grassland soils. Soil Science and Plant Nutrition, 2020, 66, 481-488.	1.9	2
205	Response to comments by J. Laubach on "Determination and mitigation of ammonia loss from urea applied to winter wheat with N-(n-butyl) thiophosphorictriamide―[Agric. Ecosyst. Environ. 137 (3–4) (2010) 261–266]. Agriculture, Ecosystems and Environment, 2011, 142, 437-438.	5.3	1
206	Urban biochar improves nitrogen and phosphorus availability in growing media. Soil Research, 2018, 56, 675.	1.1	1
207	Hotspots of reactive nitrogen loss in China: Production, consumption, spatiotemporal trend and reduction responsibility. Environmental Pollution, 2021, 284, 117126.	7.5	1
208	Costs and benefits of ammonia abatement in Australia. Resources, Conservation and Recycling, 2022, 182, 106318.	10.8	1
209	Dry Climate Aggravates Riverine Nitrogen Pollution in Australia by Water Volume Reduction. Environmental Science & Technology, 2021, 55, 16455-16464.	10.0	1
210	Accuracy Assessment of Sequential Indicator Simulation in Three-dimensional Prediction of Soil Texture. Soil Science, 2012, 177, 355-359.	0.9	0
211	Measuring greenhouse gas emissions from agriculture using QCL and FTIR spectroscopy techniques. , 2014, , .		0
212	The effectiveness of nitrification inhibitor application on grain yield and quality, fertiliser nitrogen recovery and soil nitrous oxide emissions in a legume–wheat rotation under elevated carbon dioxide (FACE). Soil Research, 2018, 56, 145.	1.1	0
213	A simple method to determine the sampling numbers in decision-making units with unknown variations of soil cadmium. Environmental Monitoring and Assessment, 2021, 193, 552.	2.7	0
214	Factors affecting ammonium capture by some Victorian lignites. Environmental Technology (United) Tj ETQq0 0	OrgBT ∕Ov	erlock 10 Tf

214