Marty Lail

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8455724/publications.pdf

Version: 2024-02-01

686830 580395 25 29 639 13 h-index citations g-index papers 30 30 30 961 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Solvothermal synthesis of MOF-derived supported Ru nanocatalysts for low-temperature ammonia synthesis. Catalysis Today, 2022, 387, 23-27.	2.2	4
2	Aerosol emissions from water-lean solvents for post-combustion CO2 capture. International Journal of Greenhouse Gas Control, 2021, 106, 103284.	2.3	9
3	Snowflake porous multi-metal oxide nanocatalysts from metallocene@metal organic framework precursors. CrystEngComm, 2021, 23, 533-537.	1.3	1
4	Sorbents screening for post-combustion CO2 capture via combined temperature and pressure swing adsorption. Chemical Engineering Journal, 2020, 380, 122201.	6.6	55
5	MOF-derived nanostructured catalysts for low-temperature ammonia synthesis. Catalysis Science and Technology, 2020, 10, 105-112.	2.1	13
6	A single-component water-lean post-combustion CO ₂ capture solvent with exceptionally low operational heat and total costs of capture – comprehensive experimental and theoretical evaluation. Energy and Environmental Science, 2020, 13, 4106-4113.	15.6	47
7	Electrochemical carbon dioxide reduction to isopropanol using novel carbonized copper metal organic framework derived electrodes. Journal of CO2 Utilization, 2020, 39, 101159.	3.3	30
8	Experimental Study of a Hydrophobic Solvent for Natural Gas Sweetening Based on the Solubility and Selectivity for Light Hydrocarbons (CH ₄ , C ₂ H ₆) and Acid Gases (CO ₂ and H ₂ S) at 298–353 K. Journal of Chemical & Engineering Data, 2019, 64, 545-556.	1.0	9
9	CaCo x Zr 1â^' x O 3â^' δPerovskites as Oxygenâ€Selective Sorbents for Air Separation. ChemSusChem, 2019, 12, 2598-2604.	3.6	9
10	Gas reactions under intrapore condensation regime within tailored metal–organic framework catalysts. Nature Communications, 2019, 10, 2076.	5.8	45
11	Synthesis of Soluble Metal Organic Framework Composites for Mixed Matrix Membranes. ACS Applied Materials & Samp; Interfaces, 2019, 11, 15638-15645.	4.0	9
12	Task-Specific Ionic Liquids Functionalized by Cobalt(II) Salen for Room Temperature Biomimetic Dioxygen Binding. Industrial & Engineering Chemistry Research, 2019, 58, 334-341.	1.8	11
13	Pd doped CaCo Zr1-O3 perovskites for automotive emissions control. Catalysis Today, 2019, 320, 30-39.	2.2	9
14	Absorption rates of carbon dioxide in amines in hydrophilic and hydrophobic solvents. Chemical Engineering Journal, 2018, 348, 514-525.	6.6	24
15	Flying MOFs: polyamine-containing fluidized MOF/SiO ₂ hybrid materials for CO ₂ capture from post-combustion flue gas. Chemical Science, 2018, 9, 4589-4599.	3.7	27
16	Oxygen Removal from Oxy-Combustion Flue Gas for CO ₂ Purification via Catalytic Methane Oxidation. Industrial & Description of the Methane Oxidation. Industrial & Description of the Methane Oxidation. Industrial & Description of the Methane Oxidation of the Methane Oxidation. Industrial & Description of the Methane Oxidation of the Me	1.8	13
17	Transformation of single MOF nanocrystals into single nanostructured catalysts within mesoporous supports: a platform for pioneer fluidized-nanoreactor hydrogen carriers. Chemical Communications, 2018, 54, 8462-8465.	2.2	11
18	Phosphorus Dendrimer Derived Solid Sorbents for CO2 Capture from Post-Combustion Gas Streams. Energy &	2.5	12

#	Article	IF	CITATIONS
19	Synthesis of Fluidized CO 2 Sorbents Based on Diamine Coordinated to Metal–Organic Frameworks by Direct Conversion of Metal Oxides Supported on Mesoporous Silica. Chemistry - A European Journal, 2018, 24, 10612-10616.	1.7	9
20	Phosphorous dendrimer bound polyethyleneimine as solid sorbents for post-combustion CO2 capture. Chemical Engineering Journal, 2018, 350, 1056-1065.	6.6	20
21	Confining Metal–Organic Framework Nanocrystals within Mesoporous Materials: A General Approach via "Solid-State―Synthesis. Chemistry of Materials, 2017, 29, 9628-9638.	3.2	39
22	Boosting the Catalytic Performance of Metal–Organic Frameworks for Steroid Transformations by Confinement within a Mesoporous Scaffold. Angewandte Chemie, 2017, 129, 13487-13491.	1.6	9
23	Boosting the Catalytic Performance of Metal–Organic Frameworks for Steroid Transformations by Confinement within a Mesoporous Scaffold. Angewandte Chemie - International Edition, 2017, 56, 13302-13306.	7.2	63
24	RTI's Solid Sorbent-Based CO2 Capture Process: Technical and Economic Lessons Learned for Application in Coal-fired, NGCC, and Cement Plants. Energy Procedia, 2017, 114, 2506-2524.	1.8	41
25	CO ₂ Capture Using Fluorinated Hydrophobic Solvents. Industrial & Engineering Chemistry Research, 2017, 56, 11958-11966.	1.8	24
26	Advanced Solid Sorbent-Based CO2 Capture Process. Energy Procedia, 2014, 63, 2216-2229.	1.8	14
27	Non-Aqueous Solvent (NAS) CO2 Capture Process. Energy Procedia, 2014, 63, 580-594.	1.8	78
28	Mechanistic study of CO formation from CO2 using a mixed-metal oxide of tin, iron, and aluminum. RSC Advances, 2014, 4, 45198-45206.	1.7	1
29	Development of a rate-based model for CO2 capture using a non-aqueous hydrophobic solvent. SSRN Electronic Journal, 0, , .	0.4	1