Fangling Ji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8455657/publications.pdf Version: 2024-02-01

33 papers	419 citations	687363 13 h-index	⁷⁹⁴⁵⁹⁴ 19 g-index
33	33	33	591
all docs	docs citations	times ranked	citing authors

FANCLING

#	Article	IF	CITATIONS
1	Biocompatible cationic pullulan-g-desoxycholic acid-g-PEI micelles used to co-deliver drug and gene for cancer therapy. Materials Science and Engineering C, 2017, 70, 418-429.	7.3	54
2	The Human W42R γD-Crystallin Mutant Structure Provides a Link between Congenital and Age-related Cataracts*. Journal of Biological Chemistry, 2013, 288, 99-109.	3.4	51
3	Structural and Biochemical Characterization of the Childhood Cataract-Associated R76S Mutant of Human γD-Crystallin. Biochemistry, 2012, 51, 2588-2596.	2.5	31
4	Esterification degree of fructose laurate exerted by Candida antarctica lipase B in organic solvents. Enzyme and Microbial Technology, 2015, 69, 46-53.	3.2	29
5	Purification and characterization of a novel organic solvent-tolerant and cold-adapted lipase from Psychrobacter sp. ZY124. Extremophiles, 2018, 22, 287-300.	2.3	23
6	Directional modification of chrysin for exerting apoptosis and enhancing significantly anti-cancer effects of 10-hydroxy camptothecin. Biomedicine and Pharmacotherapy, 2016, 82, 693-703.	5.6	21
7	Nanobody-Based high-performance immunosorbent for selective beta 2-microglobulin purification from blood. Acta Biomaterialia, 2020, 107, 232-241.	8.3	20
8	Crystal structure of the cataractâ€causing P23T γDâ€crystallin mutant. Proteins: Structure, Function and Bioinformatics, 2013, 81, 1493-1498.	2.6	19
9	Combination of baicalein and 10-hydroxy camptothecin exerts remarkable synergetic anti-cancer effects. Phytomedicine, 2016, 23, 1778-1786.	5.3	18
10	Efficient mono-acylation of fructose by lipase-catalyzed esterification in ionic liquid co-solvents. Carbohydrate Research, 2015, 416, 51-58.	2.3	17
11	Quercetin exerts synergetic anti-cancer activity with 10-hydroxy camptothecin. European Journal of Pharmaceutical Sciences, 2017, 109, 223-232.	4.0	16
12	High Expression Achievement of Active and Robust Anti-β2 microglobulin Nanobodies via E.coli Hosts Selection. Molecules, 2019, 24, 2860.	3.8	16
13	Characterization of a salt-activated protease with temperature-dependent secretion in <i>Stenotrophomonas maltophilia</i> FF11 isolated from frozen Antarctic krill. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 829-840.	3.0	13
14	Structural and enzymatic characterization of acetolactate decarboxylase from Bacillus subtilis. Applied Microbiology and Biotechnology, 2018, 102, 6479-6491.	3.6	13
15	Freezing-assisted synthesis of covalent C–C linked bivalent and bispecific nanobodies. Organic and Biomolecular Chemistry, 2019, 17, 257-263.	2.8	11
16	Efficient continuous-flow aldehyde tag conversion using immobilized formylglycine generating enzyme. Catalysis Science and Technology, 2020, 10, 484-492.	4.1	11
17	Characterization and comparison of two peptide-tag specific nanobodies for immunoaffinity chromatography. Journal of Chromatography A, 2020, 1624, 461227.	3.7	7
18	Rational design of <i>Meso</i> â€2,3â€butanediol dehydrogenase by molecular dynamics simulation and experimental evaluations. FEBS Letters, 2017, 591, 3402-3413.	2.8	6

Fangling Ji

#	Article	IF	CITATIONS
19	Studies on structure-function relationships of acetolactate decarboxylase from <i>Enterobacter cloacae</i> . RSC Advances, 2018, 8, 39066-39073.	3.6	6
20	Facile and Controllable Fabrication of Protein-Only Nanoparticles through Photo-Induced Crosslinking of Albumin and Their Application as DOX Carriers. Nanomaterials, 2019, 9, 797.	4.1	5
21	Nanobody-loaded immunosorbent for highly-specific removal of interleukin-17A from blood. Journal of Chromatography A, 2021, 1654, 462478.	3.7	5
22	Generation and Application of Fluorescent Anti-Human β2-Microglobulin VHHs via Amino Modification. Molecules, 2019, 24, 2600.	3.8	4
23	Structure and catalytic mechanistic insight into Enterobacter aerogenes acetolactate decarboxylase. Enzyme and Microbial Technology, 2019, 126, 9-17.	3.2	4
24	LotS/LotR/Clp, a novel signal pathway responding to temperature, modulating protease expression via c-di-GMP mediated manner in Stenotrophomonas maltophilia FF11. Microbiological Research, 2018, 214, 60-73.	5.3	3
25	Benzotriazole-5-carboxylic as a mixed-mode ligand for chromatographic separation of antibody with enhanced adsorption capacity. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2021, 1179, 122652.	2.3	3
26	Nanobodies as solubilization chaperones for the expression and purification of inclusion-body prone proteins. Chemical Communications, 2022, 58, 2898-2901.	4.1	3
27	Single and dual functionalization of proteins using site-specific nucleophilic carbon ligations. Chemical Communications, 2022, 58, 6316-6319.	4.1	3
28	Peptide Linker Affecting the Activity Retention Rate of VHH in Immunosorbents. Biomolecules, 2020, 10, 1610.	4.0	2
29	Tyrosine-Based Dual-Functional Interface for Trapping and On-Site Photo-Induced Covalent Immobilization of Proteins. Bioconjugate Chemistry, 2022, 33, 829-838.	3.6	2
30	An engineered peptide tag-specific nanobody for immunoaffinity chromatography application enabling efficient product recovery at mild conditions. Journal of Chromatography A, 2022, 1676, 463274.	3.7	2
31	Nanobodies: From Serendipitous Discovery of Heavy Chain-Only Antibodies in Camelids to a Wide Range of Useful Applications. Methods in Molecular Biology, 2022, 2446, 3-17.	0.9	1
32	Cytoplasmic Expression of Nanobodies with Formylglycine Generating Enzyme Tag and Conversion to a Bio-Orthogonal Aldehyde Group. Methods in Molecular Biology, 2022, 2446, 357-371.	0.9	0
33	Toxicity elimination of phenanthrene to wheat mediated by enhanced Pseudomonas sp. JM2-gfp biofilm degradation. International Journal of Environmental Science and Technology, 0, , 1.	3.5	0