
Ramon Mangues

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8455487/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Self-assembling protein nanocarrier for selective delivery of cytotoxic polypeptides to CXCR4+ head and neck squamous cell carcinoma tumors. Acta Pharmaceutica Sinica B, 2022, 12, 2578-2591.	5.7	15
2	A multivalent Ara-C-prodrug nanoconjugate achieves selective ablation of leukemic cells in an acute myeloid leukemia mouse model. Biomaterials, 2022, 280, 121258.	5.7	12
3	Time-Prolonged Release of Tumor-Targeted Protein–MMAE Nanoconjugates from Implantable Hybrid Materials. Pharmaceutics, 2022, 14, 192.	2.0	8
4	CXCR4-targeted nanotoxins induce GSDME-dependent pyroptosis in head and neck squamous cell carcinoma. Journal of Experimental and Clinical Cancer Research, 2022, 41, 49.	3.5	24
5	Engineering non-antibody human proteins as efficient scaffolds for selective, receptor-targeted drug delivery. Journal of Controlled Release, 2022, 343, 277-287.	4.8	7
6	A Novel CXCR4-Targeted Diphtheria Toxin Nanoparticle Inhibits Invasion and Metastatic Dissemination in a Head and Neck Squamous Cell Carcinoma Mouse Model. Pharmaceutics, 2022, 14, 887.	2.0	5
7	A diphtheria toxin-based nanoparticle achieves specific cytotoxic effect on CXCR4+ lymphoma cells without toxicity in immunocompromised and immunocompetent mice. Biomedicine and Pharmacotherapy, 2022, 150, 112940.	2.5	4
8	GSDMD-dependent pyroptotic induction by a multivalent CXCR4-targeted nanotoxin blocks colorectal cancer metastases. Drug Delivery, 2022, 29, 1384-1397.	2.5	16
9	Novel Endometrial Cancer Models Using Sensitive Metastasis Tracing for CXCR4-Targeted Therapy in Advanced Disease. Biomedicines, 2022, 10, 1680.	1.4	6
10	Design and engineering of tumor-targeted, dual-acting cytotoxic nanoparticles. Acta Biomaterialia, 2021, 119, 312-322.	4.1	14
11	Epigenetic loss of m1A RNA demethylase ALKBH3 in Hodgkin lymphoma targets collagen, conferring poor clinical outcome. Blood, 2021, 137, 994-999.	0.6	30
12	Specific Cytotoxic Effect of an Auristatin Nanoconjugate Towards CXCR4+ Diffuse Large B-Cell Lymphoma Cells. International Journal of Nanomedicine, 2021, Volume 16, 1869-1888.	3.3	16
13	In Vitro Fabrication of Microscale Secretory Granules. Advanced Functional Materials, 2021, 31, 2100914.	7.8	13
14	Biparatopic Protein Nanoparticles for the Precision Therapy of CXCR4+ Cancers. Cancers, 2021, 13, 2929.	1.7	11
15	Antineoplastic effect of a diphtheria toxin-based nanoparticle targeting acute myeloid leukemia cells overexpressing CXCR4. Journal of Controlled Release, 2021, 335, 117-129.	4.8	11
16	Rational engineering of a human GFP-like protein scaffold for humanized targeted nanomedicines. Acta Biomaterialia, 2021, 130, 211-222.	4.1	8
17	Ion-dependent slow protein release from <i>inÂvivo</i> disintegrating micro-granules. Drug Delivery, 2021, 28, 2383-2391.	2.5	10
18	Antibacterial Activity of T22, a Specific Peptidic Ligand of the Tumoral Marker CXCR4. Pharmaceutics, 2021, 13, 1922.	2.0	5

#	Article	IF	CITATIONS
19	Controlling self-assembling and tumor cell-targeting of protein-only nanoparticles through modular protein engineering. Science China Materials, 2020, 63, 147-156.	3.5	11
20	A CXCR4-targeted nanocarrier achieves highly selective tumor uptake in diffuse large B-cell lymphoma mouse models. Haematologica, 2020, 105, 741-753.	1.7	36
21	Endosomal escape of protein nanoparticles engineered through humanized histidine-rich peptides. Science China Materials, 2020, 63, 644-653.	3.5	15
22	Engineering Secretory Amyloids for Remote and Highly Selective Destruction of Metastatic Foci. Advanced Materials, 2020, 32, e1907348.	11.1	40
23	Artificial Inclusion Bodies for Clinical Development. Advanced Science, 2020, 7, 1902420.	5.6	36
24	Self-assembling as regular nanoparticles dramatically minimizes photobleaching of tumour-targeted GFP. Acta Biomaterialia, 2020, 103, 272-280.	4.1	13
25	Divalent Cations: A Molecular Glue for Protein Materials. Trends in Biochemical Sciences, 2020, 45, 992-1003.	3.7	42
26	Fluorescent Dye Labeling Changes the Biodistribution of Tumor-Targeted Nanoparticles. Pharmaceutics, 2020, 12, 1004.	2.0	25
27	Developing Protein–Antitumoral Drug Nanoconjugates as Bifunctional Antimicrobial Agents. ACS Applied Materials & Interfaces, 2020, 12, 57746-57756.	4.0	6
28	A refined cocktailing of pro-apoptotic nanoparticles boosts anti-tumor activity. Acta Biomaterialia, 2020, 113, 584-596.	4.1	14
29	Nanostructured toxins for the selective destruction of drug-resistant human CXCR4+ colorectal cancer stem cells. Journal of Controlled Release, 2020, 320, 96-104.	4.8	48
30	An Auristatin nanoconjugate targeting CXCR4+ leukemic cells blocks acute myeloid leukemia dissemination. Journal of Hematology and Oncology, 2020, 13, 36.	6.9	39
31	Selective delivery of T22-PE24-H6 to CXCR4 ⁺ diffuse large B-cell lymphoma cells leads to wide therapeutic index in a disseminated mouse model. Theranostics, 2020, 10, 5169-5180.	4.6	22
32	Engineering Protein Venoms as Selfâ€Assembling CXCR4â€Targeted Cytotoxic Nanoparticles. Particle and Particle Systems Characterization, 2020, 37, 2000040.	1.2	9
33	Effect of serpinE1 overexpression on the primary tumor and lymph node, and lung metastases in head and neck squamous cell carcinoma. Head and Neck, 2019, 41, 429-439.	0.9	28
34	Pharmacological modulation of CXCR4 cooperates with BET bromodomain inhibition in diffuse large B-cell lymphoma. Haematologica, 2019, 104, 778-788.	1.7	17
35	Nanostructure Empowers Active Tumor Targeting in Ligandâ€Based Molecular Delivery. Particle and Particle Systems Characterization, 2019, 36, 1900304.	1.2	9
36	Collaborative membrane activity and receptor-dependent tumor cell targeting for precise nanoparticle delivery in CXCR4+ colorectal cancer. Acta Biomaterialia, 2019, 99, 426-432.	4.1	11

#	Article	IF	CITATIONS
37	Protein-driven nanomedicines in oncotherapy. Current Opinion in Pharmacology, 2019, 47, 1-7.	1.7	21
38	Efficient bioactive oligonucleotideâ€protein conjugation for cellâ€ŧargeted cancer therapy. ChemistryOpen, 2019, 8, 382-387.	0.9	7
39	The combined use of EFS, GPX2, and SPRR1A expression could distinguish favorable from poor clinical outcome among epithelialâ€like head and neck carcinoma subtypes. Head and Neck, 2019, 41, 1830-1845.	0.9	9
40	Recruiting potent membrane penetrability in tumor cell-targeted protein-only nanoparticles. Nanotechnology, 2019, 30, 115101.	1.3	11
41	Assembly of histidine-rich protein materials controlled through divalent cations. Acta Biomaterialia, 2019, 83, 257-264.	4.1	49
42	Release of targeted protein nanoparticles from functional bacterial amyloids: A death star-like approach. Journal of Controlled Release, 2018, 279, 29-39.	4.8	30
43	Self-assembling toxin-based nanoparticles as self-delivered antitumoral drugs. Journal of Controlled Release, 2018, 274, 81-92.	4.8	55
44	Protein-Based Therapeutic Killing for Cancer Therapies. Trends in Biotechnology, 2018, 36, 318-335.	4.9	98
45	Focal Adhesion Genes Refine the Intermediate-Risk Cytogenetic Classification of Acute Myeloid Leukemia. Cancers, 2018, 10, 436.	1.7	8
46	Selective depletion of metastatic stem cells as therapy for human colorectal cancer. EMBO Molecular Medicine, 2018, 10, .	3.3	64
47	Selective CXCR4 ⁺ Cancer Cell Targeting and Potent Antineoplastic Effect by a Nanostructured Version of Recombinant Ricin. Small, 2018, 14, e1800665.	5.2	40
48	Switching cell penetrating and CXCR4-binding activities of nanoscale-organized arginine-rich peptides. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1777-1786.	1.7	12
49	Conformational Conversion during Controlled Oligomerization into Nonamylogenic Protein Nanoparticles. Biomacromolecules, 2018, 19, 3788-3797.	2.6	18
50	CXCR7 expression in diffuse large B-cell lymphoma identifies a subgroup of CXCR4+ patients with good prognosis. PLoS ONE, 2018, 13, e0198789.	1.1	10
51	Intrinsic functional and architectonic heterogeneity of tumor-targeted protein nanoparticles. Nanoscale, 2017, 9, 6427-6435.	2.8	21
52	Engineering tumor cell targeting in nanoscale amyloidal materials. Nanotechnology, 2017, 28, 015102.	1.3	24
53	Engineering multifunctional protein nanoparticles by <i>in vitro</i> disassembling and reassembling of heterologous building blocks. Nanotechnology, 2017, 28, 505102.	1.3	12
54	Cytoplasmic cyclin D1 controls the migration and invasiveness of mantle lymphoma cells. Scientific Reports, 2017, 7, 13946.	1.6	34

#	Article	IF	CITATIONS
55	Peptideâ€Based Nanostructured Materials with Intrinsic Proapoptotic Activities in CXCR4 ⁺ Solid Tumors. Advanced Functional Materials, 2017, 27, 1700919.	7.8	32
56	Protein-only, antimicrobial peptide-containing recombinant nanoparticles with inherent built-in antibacterial activity. Acta Biomaterialia, 2017, 60, 256-263.	4.1	26
57	Stroma-derived HGF drives metabolic adaptation of colorectal cancer to angiogenesis inhibitors. Oncotarget, 2017, 8, 38193-38213.	0.8	22
58	<i>NEDD9</i> , an independent good prognostic factor in intermediate-risk acute myeloid leukemia patients. Oncotarget, 2017, 8, 76003-76014.	0.8	5
59	Targeting in Cancer Therapies. Medical Sciences (Basel, Switzerland), 2016, 4, 6.	1.3	7
60	uPA/uPAR and SERPINE1 in head and neck cancer: role in tumor resistance, metastasis, prognosis and therapy. Oncotarget, 2016, 7, 57351-57366.	0.8	120
61	Bacterial mimetics of endocrine secretory granules as immobilized in vivo depots for functional protein drugs. Scientific Reports, 2016, 6, 35765.	1.6	28
62	CXCR4 ⁺ -targeted protein nanoparticles produced in the food-grade bacterium <i>Lactococcus lactis</i> . Nanomedicine, 2016, 11, 2387-2398.	1.7	10
63	Lurbinectedin induces depletion of tumor-associated macrophages (TAM), an essential component of its <i>in vivo</i> synergism with gemcitabine. DMM Disease Models and Mechanisms, 2016, 9, 1461-1471.	1.2	21
64	Functional recruitment for drug delivery through protein-based nanotechnologies. Nanomedicine, 2016, 11, 1333-1336.	1.7	20
65	Recombinant pharmaceuticals from microbial cells: a 2015 update. Microbial Cell Factories, 2016, 15, 33.	1.9	265
66	Cancer-specific uptake of a liganded protein nanocarrier targeting aggressive CXCR4 + colorectal cancer models. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1987-1996.	1.7	34
67	Structural and functional features of self-assembling protein nanoparticles produced in endotoxin-free Escherichia coli. Microbial Cell Factories, 2016, 15, 59.	1.9	13
68	CKMT1 and NCOA1 expression as a predictor of clinical outcome in patients with advancedâ€stage head and neck squamous cell carcinoma. Head and Neck, 2016, 38, E1392-403.	0.9	16
69	Rational engineering of single-chain polypeptides into protein-only, BBB-targeted nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1241-1251.	1.7	26
70	Bottomâ€Up Instructive Quality Control in the Biofabrication of Smart Protein Materials. Advanced Materials, 2015, 27, 7816-7822.	11.1	61
71	Formulating tumor-homing peptides as regular nanoparticles enhances receptor-mediated cell penetrability. Materials Letters, 2015, 154, 140-143.	1.3	8
72	Towards protein-based viral mimetics for cancer therapies. Trends in Biotechnology, 2015, 33, 253-258.	4.9	65

#	Article	IF	CITATIONS
73	Targeting low-density lipoprotein receptors with protein-only nanoparticles. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	2
74	Gated Mesoporous Silica Nanoparticles Using a Doubleâ€Role Circular Peptide for the Controlled and Targetâ€Preferential Release of Doxorubicin in CXCR4â€Expresing Lymphoma Cells. Advanced Functional Materials, 2015, 25, 687-695.	7.8	54
75	Higher metastatic efficiency of KRas G12V than KRas G13D in a colorectal cancer model. FASEB Journal, 2015, 29, 464-476.	0.2	43
76	<scp>CXCR4</scp> expression enhances diffuse large B cell lymphoma dissemination and decreases patient survival. Journal of Pathology, 2015, 235, 445-455.	2.1	71
77	Enhanced cell migration and apoptosis resistance may underlie the association between high SERPINE1 expression and poor outcome in head and neck carcinoma patients. Oncotarget, 2015, 6, 29016-29033.	0.8	62
78	Focal adhesion protein expression in human diffuse large B ell lymphoma. Histopathology, 2014, 65, 119-131.	1.6	9
79	Colon cancer cells colonize the lung from established liver metastases through p38 MAPK signalling andÂPTHLH. Nature Cell Biology, 2014, 16, 685-694.	4.6	117
80	Subcutaneous preconditioning increases invasion and metastatic dissemination in colorectal cancer models. DMM Disease Models and Mechanisms, 2014, 7, 387-96.	1.2	8
81	Sheltering DNA in self-organizing, protein-only nano-shells as artificial viruses for gene delivery. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 535-541.	1.7	27
82	<i>In Vivo</i> Architectonic Stability of Fully <i>de Novo</i> Designed Protein-Only Nanoparticles. ACS Nano, 2014, 8, 4166-4176.	7.3	89
83	Immunostaining Protocol: P-Stat3 (Xenograft and Mice). Bio-protocol, 2014, 4, .	0.2	0
84	STC1 Expression By Cancer-Associated Fibroblasts Drives Metastasis of Colorectal Cancer. Cancer Research, 2013, 73, 1287-1297.	0.4	144
85	Core binding factor acute myeloid leukemia: the impact of age, leukocyte count, molecular findings, and minimal residual disease. European Journal of Haematology, 2013, 91, 209-218.	1.1	41
86	A novel orally available inhibitor of focal adhesion signaling increases survival in a xenograft model of diffuse large B-cell lymphoma with central nervous system involvement. Haematologica, 2013, 98, 1242-1249.	1.7	3
87	Improved performance of proteinâ€based recombinant gene therapy vehicles by tuning downstream procedures. Biotechnology Progress, 2013, 29, 1458-1463.	1.3	1
88	High RAB 25 expression is associated with good clinical outcome in patients with locally advanced head and neck squamous cell carcinoma. Cancer Medicine, 2013, 2, 950-963.	1.3	13
89	Gene expression signatures and molecular markers associated with clinical outcome in locally advanced head and neck carcinoma. Carcinogenesis, 2012, 33, 1707-1716.	1.3	31
90	Dependency of Colorectal Cancer on a TGF-Î ² -Driven Program in Stromal Cells for Metastasis Initiation. Cancer Cell, 2012, 22, 571-584.	7.7	881

#	Article	IF	CITATIONS
91	Non-amyloidogenic peptide tags for the regulatable self-assembling of protein-only nanoparticles. Biomaterials, 2012, 33, 8714-8722.	5.7	65
92	Intracellular CXCR4+ cell targeting with T22-empowered protein-only nanoparticles. International Journal of Nanomedicine, 2012, 7, 4533.	3.3	61
93	Subcutaneous passage increases cell aggressiveness in a xenograft model of diffuse large B cell lymphoma. Clinical and Experimental Metastasis, 2012, 29, 339-347.	1.7	5
94	The Intestinal Stem Cell Signature Identifies Colorectal Cancer Stem Cells and Predicts Disease Relapse. Cell Stem Cell, 2011, 8, 511-524.	5.2	811
95	A novel inhibitor of focal adhesion signaling induces caspase-independent cell death in diffuse large B-cell lymphoma. Blood, 2011, 118, 4411-4420.	0.6	18
96	Carbon metabolism and the sign of control coefficients in metabolic adaptations underlying K-ras transformation. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 746-754.	0.5	18
97	Site-Dependent E-Cadherin Cleavage and Nuclear Translocation in a Metastatic Colorectal Cancer Model. American Journal of Pathology, 2010, 177, 2067-2079.	1.9	35
98	Modular Protein Engineering in Emerging Cancer Therapies. Current Pharmaceutical Design, 2009, 15, 893-916.	0.9	38
99	A celecoxib derivative inhibits focal adhesion signaling and induces caspaseâ€8â€dependent apoptosis in human acute myeloid leukemia cells. International Journal of Cancer, 2008, 123, 217-226.	2.3	20
100	<i>Ku</i> 70 predicts response and primary tumor recurrence after therapy in locally advanced head and neck cancer. International Journal of Cancer, 2008, 123, 1068-1079.	2.3	38
101	A Critical Role for Rac1 in Tumor Progression of Human Colorectal Adenocarcinoma Cells. American Journal of Pathology, 2008, 172, 156-166.	1.9	52
102	Bobel-24 and Derivatives Induce Caspase-Independent Death in Pancreatic Cancer Regardless of Apoptotic Resistance. Cancer Research, 2008, 68, 6313-6323.	0.4	16
103	Orthotopic Microinjection of Human Colon Cancer Cells in Nude Mice Induces Tumor Foci in All Clinically Relevant Metastatic Sites. American Journal of Pathology, 2007, 170, 1077-1085.	1.9	140
104	Mouse models in oncogenesis and cancer therapy. Clinical and Translational Oncology, 2006, 8, 318-329.	1.2	116
105	Celecoxib induces anoikis in human colon carcinoma cells associated with the deregulation of focal adhesions and nuclear translocation of p130Cas. International Journal of Cancer, 2006, 118, 2381-2389.	2.3	34
106	K-ras Asp12 mutant neither interacts with Raf, nor signals through Erk and is less tumorigenic than K-ras Val12. Carcinogenesis, 2006, 27, 2190-2200.	1.3	58
107	Novel triiodophenol derivatives induce caspase-independent mitochondrial cell death in leukemia cells inhibited by Myc. Molecular Cancer Therapeutics, 2006, 5, 1166-1175.	1.9	11
108	K-ras Codon-Specific Mutations Produce Distinctive Metabolic Phenotypes in Human Fibroblasts. Cancer Research, 2005, 65, 5512-5515.	0.4	110

#	Article	IF	CITATIONS
109	Short amino acid stretches can mediate amyloid formation in globular proteins: The Src homology 3 (SH3) case. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7258-7263.	3.3	241
110	Complex effects of Ras proto-oncogenes in tumorigenesis. Carcinogenesis, 2003, 25, 535-539.	1.3	22
111	Codon 12 and codon 13 mutations at the Kâ€ras gene induce different soft tissue sarcoma types in nude mice. FASEB Journal, 2002, 16, 1642-1644.	0.2	34
112	Heterotopic implantation alters the regulation of apoptosis and the cell cycle and generates a new metastatic site in a human pancreatic tumor xenograft model. FASEB Journal, 2002, 16, 975-982.	0.2	19
113	NF1 inactivation cooperates with N-Ras in in vivo lymphogenesis activating Erk by a mechanism independent of its Ras-GTPase accelerating activity. Oncogene, 1998, 17, 1705-1716.	2.6	26
114	Isolation of High Molecular Weight DNA for Reliable Genotyping of Transgenic Mice. BioTechniques, 1997, 22, 1114-1119.	0.8	64
115	Inactivation of the cyclin-dependent kinase inhibitor p15INK4b by deletion and de novo methylation with independence of p16INK4a alterations in murine primary T-cell lymphomas. Oncogene, 1997, 14, 1361-1370.	2.6	72
116	S49 Cells Endogenously Express Subtype 2 Somatostatin Receptors Which Couple to Increase Protein Tyrosine Phosphatase Activity in Membranes and Down-regulate Raf-1 Activity In Situ. Cellular Signalling, 1997, 9, 539-549.	1.7	25
117	Promoter demethylation in MMTV/N-rasN transgenic mice required for transgene expression and tumorigenesis. Molecular Carcinogenesis, 1995, 14, 94-102.	1.3	8
118	Absence ofMDM-2 gene amplification in experimentally induced tumors regardless ofp53 status. Molecular Carcinogenesis, 1994, 9, 40-45.	1.3	13