

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/845517/publications.pdf Version: 2024-02-01

LASSE KIÃ D

#	Article	IF	CITATIONS
1	Prevalence and phenotypes of JAK2 V617F and calreticulin mutations in a Danish general population. Blood, 2019, 134, 469-479.	1.4	139
2	The JAK2 V617F somatic mutation, mortality and cancer risk in the general population. Haematologica, 2011, 96, 450-453.	3.5	110
3	Whole Blood Transcriptional Profiling Reveals Deregulation of Oxidative and Antioxidative Defence Genes in Myelofibrosis and Related Neoplasms. Potential Implications of Downregulation of Nrf2 for Genomic Instability and Disease Progression. PLoS ONE, 2014, 9, e112786.	2.5	59
4	Mathematical modelling as a proof of concept for MPNs as a human inflammation model for cancer development. PLoS ONE, 2017, 12, e0183620.	2.5	51
5	JAK2V617F but not CALR mutations confer increased molecular responses to interferon-α via JAK1/STAT1 activation. Leukemia, 2019, 33, 995-1010.	7.2	43
6	Minimal residual disease after long-term interferon-alpha2 treatment: a report on hematological, molecular and histomorphological response patterns in 10 patients with essential thrombocythemia and polycythemia vera. Leukemia and Lymphoma, 2016, 57, 348-354.	1.3	40
7	Differential Dynamics of CALR Mutant Allele Burden in Myeloproliferative Neoplasms during Interferon Alfa Treatment. PLoS ONE, 2016, 11, e0165336.	2.5	38
8	Safety and efficacy of combination therapy of interferonâ€Î±2 and ruxolitinib in polycythemia vera and myelofibrosis. Cancer Medicine, 2018, 7, 3571-3581.	2.8	38
9	Interferonâ€Î± induces marked alterations in circulating regulatory T cells, <scp>NK</scp> cell subsets, and dendritic cells in patients with <scp>JAK</scp> 2V617Fâ€positive essential thrombocythemia and polycythemia vera. European Journal of Haematology, 2016, 97, 83-92.	2.2	30
10	Therapeutic Cancer Vaccination With a Peptide Derived From the Calreticulin Exon 9 Mutations Induces Strong Cellular Immune Responses in Patients With CALR-Mutant Chronic Myeloproliferative Neoplasms. Frontiers in Oncology, 2021, 11, 637420.	2.8	29
11	Smoking, blood cells and myeloproliferative neoplasms: metaâ€analysis and Mendelian randomization of 2·3 million people. British Journal of Haematology, 2020, 189, 323-334.	2.5	27
12	Variantâ€specific discrepancy when quantitating <i>BCRâ€ABL1</i> e13a2 and e14a2 transcripts using the Europe Against Cancer qPCR assay. European Journal of Haematology, 2019, 103, 26-34.	2.2	26
13	Genomic profiling of a randomized trial of interferon-α vs hydroxyurea in MPN reveals mutation-specific responses. Blood Advances, 2022, 6, 2107-2119.	5.2	26
14	Dataâ€driven analysis of JAK2 V617F kinetics during interferonâ€alpha2 treatment of patients with polycythemia vera and related neoplasms. Cancer Medicine, 2020, 9, 2039-2051.	2.8	21
15	Clonal Hematopoiesis and Mutations of Myeloproliferative Neoplasms. Cancers, 2020, 12, 2100.	3.7	19
16	A Highly Sensitive Quantitative Real-Time PCR Assay for Determination of Mutant JAK2 Exon 12 Allele Burden. PLoS ONE, 2012, 7, e33100.	2.5	18
17	Sorted peripheral blood cells identify <i>CALR</i> mutations in B- and T-lymphocytes. Leukemia and Lymphoma, 2018, 59, 973-977.	1.3	15
18	Evidence of immune elimination, immuno-editing and immune escape in patients with hematological cancer. Cancer Immunology, Immunotherapy, 2020, 69, 315-324.	4.2	12

Lasse Kjær

#	Article	IF	CITATIONS
19	Bridging blood cancers and inflammation: The reduced Cancitis model. Journal of Theoretical Biology, 2019, 465, 90-108.	1.7	11
20	Myeloproliferative blood cancers as a human neuroinflammation model for development of Alzheimer's disease: evidences and perspectives. Journal of Neuroinflammation, 2020, 17, 248.	7.2	8
21	Elevated levels of oxidized nucleosides in individuals with the JAK2V617F mutation from a general population study. Redox Biology, 2021, 41, 101895.	9.0	8
22	Mathematical Modeling of MPNs Offers Understanding and Decision Support for Personalized Treatment. Cancers, 2020, 12, 2119.	3.7	7
23	Bâ€cell frequencies and immunoregulatory phenotypes in myeloproliferative neoplasms: Influence of ruxolitinib, interferonâ€Î±2, or combination treatment. European Journal of Haematology, 2019, 103, 351-361.	2.2	6
24	Smoking impairs molecular response, and reduces overall survival in patients with chronic myeloproliferative neoplasms: A retrospective cohort study. British Journal of Haematology, 2021, 193, 83-92.	2.5	6
25	Dataâ€driven analysis of the kinetics of the <i>JAK2V617F</i> allele burden and blood cell counts during hydroxyurea treatment of patients with polycythemia vera, essential thrombocythemia, and primary myelofibrosis. European Journal of Haematology, 2021, 107, 624-633.	2.2	6
26	The red blood cell count and the erythrocyte sedimentation rate in the diagnosis of polycythaemia vera. European Journal of Haematology, 2020, 104, 46-54.	2.2	5
27	Rapid Clearance Of JAK2 V617F Allele Burden In Patient With Advanced Polycythemia Vera (PV) During Combination Therapy With Ruxolitinib and Peg-Interferon Alpha-2a. Blood, 2013, 122, 5241-5241.	1.4	5
28	Doseâ€dependent mathematical modeling of interferonâ€Î±â€treatment for personalized treatment of myeloproliferative neoplasms. Computational and Systems Oncology, 2021, 1, .	1.5	2
29	Patients With Myeloproliferative Neoplasms Harbor High Frequencies of CD8 T Cell-Platelet Aggregates Associated With T Cell Suppression. Frontiers in Immunology, 2022, 13, .	4.8	0