
Lorenzo Diaz-Mataix

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/845487/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Observation of others' threat reactions recovers memories previously shaped by firsthand experiences. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	5
2	Beyond Freezing: Temporal Expectancy of an Aversive Event Engages the Amygdalo–Prefronto–Dorsostriatal Network. Cerebral Cortex, 2020, 30, 5257-5269.	1.6	11
3	Updating temporal expectancy of an aversive event engages striatal plasticity under amygdala control. Nature Communications, 2017, 8, 13920.	5.8	35
4	Updating of aversive memories after temporal error detection is differentially modulated by mTOR across development. Learning and Memory, 2017, 24, 115-122.	0.5	9
5	Characterization of the amplificatory effect of norepinephrine in the acquisition of Pavlovian threat associations. Learning and Memory, 2017, 24, 432-439.	0.5	21
6	Manipulating Human Memory Through Reconsolidation: Stones Left Unturned. AJOB Neuroscience, 2016, 7, 244-247.	0.6	6
7	Evaluation of ambiguous associations in the amygdala by learning the structure of the environment. Nature Neuroscience, 2016, 19, 965-972.	7.1	25
8	The Neural Foundations of Reaction and Action in Aversive Motivation. Current Topics in Behavioral Neurosciences, 2015, 27, 171-195.	0.8	26
9	Hebbian and neuromodulatory mechanisms interact to trigger associative memory formation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5584-92.	3.3	170
10	Interval Timing in Aversive Conditioning: Neural Correlates in Amygdala and Related Networks in Rats. Procedia, Social and Behavioral Sciences, 2014, 126, 257-258.	0.5	0
11	The amygdala: A potential player in timing CS–US intervals. Behavioural Processes, 2014, 101, 112-122.	0.5	35
12	The selectivity of aversive memory reconsolidation and extinction processes depends on the initial encoding of the Pavlovian association. Learning and Memory, 2013, 20, 695-699.	0.5	25
13	Detection of a Temporal Error Triggers Reconsolidation of Amygdala-Dependent Memories. Current Biology, 2013, 23, 467-472.	1.8	140
14	The antidepressant agomelatine reduces fear long term memory but not acquisition or short term expression of fear memories. European Psychiatry, 2011, 26, 653-653.	0.1	1
15	Sensory-Specific Associations Stored in the Lateral Amygdala Allow for Selective Alteration of Fear Memories. Journal of Neuroscience, 2011, 31, 9538-9543.	1.7	59
16	Dopamine release induced by atypical antipsychotics in prefrontal cortex requires 5-HT1A receptors but not 5-HT2A receptors. International Journal of Neuropsychopharmacology, 2010, 13, 1299-1314.	1.0	67
17	The amygdala encodes specific sensory features of an aversive reinforcer. Nature Neuroscience, 2010, 13, 536-537.	7.1	84
18	Dissociable Roles for the Ventromedial Prefrontal Cortex and Amygdala in Fear Extinction: NR2B Contribution, Cerebral Cortex, 2009, 19, 474-482.	1.6	139

LORENZO DIAZ-MATAIX

#	Article	IF	CITATIONS
19	The Hallucinogen DOI Reduces Low-Frequency Oscillations in Rat Prefrontal Cortex: Reversal by Antipsychotic Drugs. Biological Psychiatry, 2008, 64, 392-400.	0.7	111
20	In vivo actions of aripiprazole on serotonergic and dopaminergic systems in rodent brain. Psychopharmacology, 2007, 191, 745-758.	1.5	90
21	Activation of pyramidal cells in rat medial prefrontal cortex projecting to ventral tegmental area by a 5-HT1A receptor agonist. European Neuropsychopharmacology, 2006, 16, 288-296.	0.3	36
22	The activation of 5-HT2A receptors in prefrontal cortex enhances dopaminergic activity. Journal of Neurochemistry, 2005, 95, 1597-1607.	2.1	195
23	Involvement of 5-HT1A Receptors in Prefrontal Cortex in the Modulation of Dopaminergic Activity: Role in Atypical Antipsychotic Action. Journal of Neuroscience, 2005, 25, 10831-10843.	1.7	271
24	In vivo modulation of 5-hydroxytryptamine release in mouse prefrontal cortex by local 5-HT2A receptors: effect of antipsychotic drugs. European Journal of Neuroscience, 2003, 18, 1235-1246.	1.2	57
25	In Vivo Modulation of the Activity of Pyramidal Neurons in the Rat Medial Prefrontal Cortex by 5-HT2A Receptors: Relationship to Thalamocortical Afferents. Cerebral Cortex, 2003, 13, 870-882.	1.6	185
26	Modulation of Serotonergic Function in Rat Brain by VN2222, a Serotonin Reuptake Inhibitor and 5-HT1A Receptor Agonist. Neuropsychopharmacology, 2003, 28, 445-456.	2.8	36