Evan M Erickson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8454800/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improved Electrochemical Behavior and Thermal Stability of Li and Mn-Rich Cathode Materials Modified by Lithium Sulfate Surface Treatment. Inorganics, 2022, 10, 39.	1.2	4
2	Fluorination of Niâ€Rich Lithiumâ€Ion Battery Cathode Materials by Fluorine Gas: Chemistry, Characterization, and Electrochemical Performance in Fullâ€cells. Batteries and Supercaps, 2021, 4, 632-645.	2.4	12
3	Thermodynamics of Antisite Defects in Layered NMC Cathodes: Systematic Insights from High-Precision Powder Diffraction Analyses. Chemistry of Materials, 2020, 32, 1002-1010.	3.2	44
4	Enhancement of Electrochemical Performance of Lithium and Manganese-Rich Cathode Materials via Thermal Treatment with SO ₂ . Journal of the Electrochemical Society, 2020, 167, 110563.	1.3	21
5	Insights into the Cathode–Electrolyte Interphases of High-Energy-Density Cathodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 16451-16461.	4.0	60
6	High-nickel layered oxide cathodes for lithium-based automotive batteries. Nature Energy, 2020, 5, 26-34.	19.8	940
7	Fluorination of Liâ€Rich Lithiumâ€Ionâ€Battery Cathode Materials by Fluorine Gas: Chemistry, Characterization, and Electrochemical Performance in Half Cells. ChemElectroChem, 2019, 6, 3337-3349.	1.7	35
8	Structural and Electrochemical Aspects of LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode Materials Doped by Various Cations. ACS Energy Letters, 2019, 4, 508-516.	8.8	348
9	Ammonia Treatment of 0.35Li ₂ MnO ₃ ·0.65LiNi _{0.35} Mn _{0.45} Co _{0.20} O Material: Insights from Solid-State NMR Analysis. Journal of Physical Chemistry C, 2018, 122, 3773-3779.	sub\$2 <td>ub19</td>	ub 1 9
10	From Surface ZrO ₂ Coating to Bulk Zr Doping by High Temperature Annealing of Nickelâ€Rich Lithiated Oxides and Their Enhanced Electrochemical Performance in Lithium Ion Batteries. Advanced Energy Materials, 2018, 8, 1701682.	10.2	443
11	Review on Challenges and Recent Advances in the Electrochemical Performance of High Capacity Li― and Mnâ€Rich Cathode Materials for Liâ€Ion Batteries. Advanced Energy Materials, 2018, 8, 1702397.	10.2	475
12	Review—Recent Advances and Remaining Challenges for Lithium Ion Battery Cathodes. Journal of the Electrochemical Society, 2017, 164, A6341-A6348.	1.3	143
13	Enhanced capacity and lower mean charge voltage of Li-rich cathodes for lithium ion batteries resulting from low-temperature electrochemical activation. RSC Advances, 2017, 7, 7116-7121.	1.7	25
14	Studies of Spinel-to-Layered Structural Transformations in LiMn ₂ O ₄ Electrodes Charged to High Voltages. Journal of Physical Chemistry C, 2017, 121, 9120-9130.	1.5	26
15	Highâ€Temperature Treatment of Liâ€Rich Cathode Materials with Ammonia: Improved Capacity and Mean Voltage Stability during Cycling. Advanced Energy Materials, 2017, 7, 1700708.	10.2	139
16	Review—Recent Advances and Remaining Challenges for Lithium Ion Battery Cathodes. Journal of the Electrochemical Society, 2017, 164, A6220-A6228.	1.3	581
17	Study of Cathode Materials for Lithium-Ion Batteries: Recent Progress and New Challenges. Inorganics, 2017, 5, 32.	1.2	68
18	Synthesis and Electrochemical Performance of Nickel-Rich Layered-Structure LiNi0.65Co0.08Mn0.27O2Cathode Materials Comprising Particles with Ni and Mn Full Concentration Gradients. Journal of the Electrochemical Society, 2016, 163, A1348-A1358.	1.3	19

#	Article	IF	CITATIONS
19	Stabilizing nickel-rich layered cathode materials by a high-charge cation doping strategy: zirconium-doped LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ . Journal of Materials Chemistry A, 2016, 4, 16073-16084.	5.2	295
20	Li ⁺ â€lon Extraction/Insertion of Niâ€Rich Li _{1+<i>x</i>} (Ni _{<i>y</i>} Co _{<i>z</i>} Mn _{<i>z</i>}) _{<i>w(0.005<<i>x</i><0.03; <i>y</i>:<i>z</i>=8:1, <i>w</i>&mailed and Raman Spectroscopy Study. ChemElectroChem, 2015, 2, 1479-1486.</i>}	> {/sub>O	₂
21	Studies of Aluminum-Doped LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ : Electrochemical Behavior, Aging, Structural Transformations, and Thermal Characteristics. Journal of the Electrochemical Society, 2015, 162, A1014-A1027.	1.3	121
22	Review—Development of Advanced Rechargeable Batteries: A Continuous Challenge in the Choice of Suitable Electrolyte Solutions. Journal of the Electrochemical Society, 2015, 162, A2424-A2438.	1.3	137
23	Oxygen reduction reaction induced pH-responsive chemo-mechanical hydrogel actuators. Soft Matter, 2015, 11, 7953-7959.	1.2	31
24	A Comparison of Atomistic and Continuum Approaches to the Study of Bonding Dynamics in Electrocatalysis: Microcantilever Stress and in Situ EXAFS Observations of Platinum Bond Expansion Due to Oxygen Adsorption during the Oxygen Reduction Reaction. Analytical Chemistry, 2014, 86, 8368-8375.	3.2	12
25	New Horizons for Conventional Lithium Ion Battery Technology. Journal of Physical Chemistry Letters, 2014, 5, 3313-3324.	2.1	224
26	Studies of Li and Mn-Rich Li _x [MnNiCo]O ₂ Electrodes: Electrochemical Performance, Structure, and the Effect of the Aluminum Fluoride Coating. Journal of the Electrochemical Society, 2013, 160, A2220-A2233.	1.3	87
27	In Situ Electrochemical X-ray Absorption Spectroscopy of Oxygen Reduction Electrocatalysis with High Oxygen Flux. Journal of the American Chemical Society, 2012, 134, 197-200.	6.6	79
28	Optimization of a permeationâ€based microfluidic direct formic acid fuel cell (DFAFC). Electrophoresis, 2011, 32, 947-956.	1.3	4