Keita Sekizawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8454587/publications.pdf Version: 2024-02-01

		331670	434195
32	2,409	21	31
papers	citations	h-index	g-index
32	32	32	3287
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Highly Durable, Self-Photosensitized Mononuclear Ruthenium Catalyst for CO2 Reduction. Synlett, 2022, 33, 1137-1141.	1.8	8
2	Solar-Driven CO ₂ Reduction Using a Semiconductor/Molecule Hybrid Photosystem: From Photocatalysts to a Monolithic Artificial Leaf. Accounts of Chemical Research, 2022, 55, 933-943.	15.6	47
3	Photocatalytic CO ₂ Reduction Using an Iron–Bipyridyl Complex Supported by Two Phosphines for Improving Catalyst Durability. Organometallics, 2022, 41, 1865-1871.	2.3	7
4	Photocatalytic CO2 reduction by a Z-scheme mechanism in an aqueous suspension of particulate (CuGa)0.3Zn1.4S2, BiVO4 and a Co complex operating dual-functionally as an electron mediator and as a cocatalyst. Applied Catalysis B: Environmental, 2022, 316, 121600.	20.2	8
5	Study of Excited States and Electron Transfer of Semiconductorâ€Metalâ€Complex Hybrid Photocatalysts for CO 2 Reduction by Using Picosecond Timeâ€Resolved Spectroscopies. Chemistry - A European Journal, 2021, 27, 1127-1137.	3.3	4
6	Carbon Nanohorn Support for Solar driven CO ₂ Reduction to CO Catalyzed by Mnâ€complex in an All Earthâ€abundant System. ChemNanoMat, 2021, 7, 596-599.	2.8	3
7	Electrochemical CO2 reduction improved by tuning the Cu-Cu distance in halogen-bridged dinuclear cuprous coordination polymers. Journal of Catalysis, 2021, 404, 12-17.	6.2	5
8	Photoelectrochemical water-splitting over a surface modified p-type Cr ₂ O ₃ photocathode. Dalton Transactions, 2020, 49, 659-666.	3.3	23
9	Electrochemical CO ₂ reduction over nanoparticles derived from an oxidized Cu–Ni intermetallic alloy. Chemical Communications, 2020, 56, 15008-15011.	4.1	10
10	Self-assembled Cuprous Coordination Polymer as a Catalyst for CO ₂ Electrochemical Reduction into C ₂ Products. ACS Catalysis, 2020, 10, 10412-10419.	11.2	44
11	Photocatalytic CO ₂ Reduction Using a Robust Multifunctional Iridium Complex toward the Selective Formation of Formic Acid. Journal of the American Chemical Society, 2020, 142, 10261-10266.	13.7	90
12	Defect Density-Dependent Electron Injection from Excited-State Ru(II) Tris-Diimine Complexes into Defect-Controlled Oxide Semiconductors. Journal of Physical Chemistry C, 2019, 123, 28310-28318.	3.1	9
13	Solar-driven CO ₂ to CO reduction utilizing H ₂ O as an electron donor by earth-abundant Mn–bipyridine complex and Ni-modified Fe-oxyhydroxide catalysts activated in a single-compartment reactor. Chemical Communications, 2019, 55, 237-240.	4.1	33
14	Molecular Catalysts Immobilized on Semiconductor Photosensitizers for Proton Reduction toward Visibleâ€Lightâ€Driven Overall Water Splitting. ChemSusChem, 2019, 12, 1807-1824.	6.8	25
15	Highly Enhanced Electrochemical Water Oxidation Reaction over Hyperfine β-FeOOH(Cl):Ni Nanorod Electrode by Modification with Amorphous Ni(OH)2. Bulletin of the Chemical Society of Japan, 2018, 91, 778-786.	3.2	24
16	Low-Energy Electrocatalytic CO ₂ Reduction in Water over Mn-Complex Catalyst Electrode Aided by a Nanocarbon Support and K ⁺ Cations. ACS Catalysis, 2018, 8, 4452-4458.	11.2	79
17	Band bending and dipole effect at interface of metal-nanoparticles and TiO ₂ directly observed by angular-resolved hard X-ray photoemission spectroscopy. Physical Chemistry Chemical Physics, 2018, 20, 11342-11346.	2.8	12
18	Solar-Driven Photocatalytic CO ₂ Reduction in Water Utilizing a Ruthenium Complex Catalyst on p-Type Fe ₂ O ₃ with a Multiheterojunction. ACS Catalysis, 2018, 8, 1405-1416.	11.2	110

KEITA SEKIZAWA

#	Article	IF	CITATIONS
19	Effects of Interfacial Electron Transfer in Metal Complex–Semiconductor Hybrid Photocatalysts on Z-Scheme CO ₂ Reduction under Visible Light. ACS Catalysis, 2018, 8, 9744-9754.	11.2	60
20	Stoichiometric water splitting using a p-type Fe ₂ O ₃ based photocathode with the aid of a multi-heterojunction. Journal of Materials Chemistry A, 2017, 5, 6483-6493.	10.3	34
21	Photoelectrochemical hydrogen production by water splitting over dual-functionally modified oxide: p-Type N-doped Ta2O5 photocathode active under visible light irradiation. Applied Catalysis B: Environmental, 2017, 202, 597-604.	20.2	49
22	Visible-light-driven CO ₂ reduction on a hybrid photocatalyst consisting of a Ru(<scp>ii</scp>) binuclear complex and a Ag-loaded TaON in aqueous solutions. Chemical Science, 2016, 7, 4364-4371.	7.4	96
23	Selective Formic Acid Production via CO ₂ Reduction with Visible Light Using a Hybrid of a Perovskite Tantalum Oxynitride and a Binuclear Ruthenium(II) Complex. ACS Applied Materials & Interfaces, 2015, 7, 13092-13097.	8.0	120
24	Visible‣ightâ€Ðriven CO ₂ Reduction with Carbon Nitride: Enhancing the Activity of Ruthenium Catalysts. Angewandte Chemie, 2015, 127, 2436-2439.	2.0	92
25	Visibleâ€Lightâ€Driven CO ₂ Reduction with Carbon Nitride: Enhancing the Activity of Ruthenium Catalysts. Angewandte Chemie - International Edition, 2015, 54, 2406-2409.	13.8	540
26	Metal-complex/semiconductor hybrids for carbon dioxide fixation. , 2015, , .		2
27	Structural Improvement of CaFe ₂ O ₄ by Metal Doping toward Enhanced Cathodic Photocurrent. ACS Applied Materials & Interfaces, 2014, 6, 10969-10973.	8.0	65
28	Hybridization between Periodic Mesoporous Organosilica and a Ru(II) Polypyridyl Complex with Phosphonic Acid Anchor Groups. ACS Applied Materials & Interfaces, 2014, 6, 1992-1998.	8.0	21
29	A polymeric-semiconductor–metal-complex hybrid photocatalyst for visible-light CO2 reduction. Chemical Communications, 2013, 49, 10127.	4.1	252
30	Artificial Z-Scheme Constructed with a Supramolecular Metal Complex and Semiconductor for the Photocatalytic Reduction of CO ₂ . Journal of the American Chemical Society, 2013, 135, 4596-4599.	13.7	404
31	Photocatalytic Reduction of CO2: From Molecules to Semiconductors. Topics in Current Chemistry, 2011, 303, 151-184.	4.0	104
32	Temperature-dependent Emission of Copper(I) Phenanthroline Complexes with Bulky Substituents: Estimation of an Energy Gap between the Singlet and Triplet MLCT States. Chemistry Letters, 2010, 39, 376-378.	1.3	29