Jerry Heng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8454340/publications.pdf

Version: 2024-02-01

		126858	175177
120	3,393	33	52
papers	citations	h-index	g-index
123	123	123	3335
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Effects of solvent, supersaturation ratio and silica template on morphology and polymorph evolution of vanillin during swift cooling crystallization. Particuology, 2022, 65, 93-104.	2.0	24
2	Investigating sizing induced surface alterations in crystalline powders using surface energy heterogeneity determination. Powder Technology, 2022, 395, 645-651.	2.1	2
3	Studying the impact of the pre-exponential factor on templated nucleation. Faraday Discussions, 2022, 235, 199-218.	1.6	2
4	Rational synthesis of polymer coated inorganic nanoparticles-MWCNT hybrids via solvophobic effects. Carbon Trends, 2022, 6, 100141.	1.4	0
5	The effect of chain length and side chains on the solubility of peptides in water from 278.15ÂK to 313.15ÂK: A case study in glycine homopeptides and dipeptides. Journal of Molecular Liquids, 2022, 352, 118681.	2.3	8
6	Effectiveness of a large-scale implementation of hybrid labs for experiential learning at Imperial College London. Education for Chemical Engineers, 2022, 39, 58-66.	2.8	7
7	The heterogeneous nucleation of pimelic acid under the effect of a template: experimental research and molecular simulation. CrystEngComm, 2022, 24, 2825-2835.	1.3	0
8	Unraveling the Impact of pH on the Crystallization of Pharmaceutical Proteins: A Case Study of Human Insulin. Crystal Growth and Design, 2022, 22, 3024-3033.	1.4	12
9	Template-Assisted Crystallization Behavior in Stirred Solutions of the Monoclonal Antibody Anti-CD20: Probability Distributions of Induction Times. Crystal Growth and Design, 2022, 22, 3637-3645.	1.4	3
10	Cocrystal design of vanillin with amide drugs: Crystal structure determination, solubility enhancement, DFT calculation. Chemical Engineering Research and Design, 2022, 183, 170-180.	2.7	7
11	Protein purification with nanoparticle-enhanced crystallisation. Separation and Purification Technology, 2021, 255, 117384.	3.9	17
12	The growth and shrinkage of water droplets at the oil-solid interface. Journal of Colloid and Interface Science, 2021, 584, 738-748.	5.0	2
13	Surface hydrophobicity: effect of alkyl chain length and network homogeneity. Frontiers of Chemical Science and Engineering, 2021, 15, 90-98.	2.3	33
14	Supersaturation and solvent dependent nucleation of carbamazepine polymorphs during rapid cooling crystallization. CrystEngComm, 2021, 23, 813-823.	1.3	19
15	Enhancing the crystallisation of insulin using amino acids as soft-templates to control nucleation. CrystEngComm, 2021, 23, 3951-3960.	1.3	8
16	Application of Phenyl-Functionalized Porous Silica for the Selective Crystallization of Carbamazepine Metastable Form II. Industrial & Engineering Chemistry Research, 2021, 60, 939-946.	1.8	9
17	Phase Behaviour of Methane Hydrates in Confined Media. Crystals, 2021, 11, 201.	1.0	3
18	Biopurification of monoclonal antibody (mAb) through crystallisation. Separation and Purification Technology, 2021, 263, 118358.	3.9	10

#	Article	IF	CITATIONS
19	Triglycine (GGG) Adopts a Polyproline II (pPII) Conformation in Its Hydrated Crystal Form: Revealing the Role of Water in Peptide Crystallization. Journal of Physical Chemistry Letters, 2021, 12, 8416-8422.	2.1	8
20	The critical role of agitation in moving from preliminary screening results to reproducible batch protein crystallisation. Chemical Engineering Research and Design, 2021, 173, 81-88.	2.7	6
21	Protein crystallisation facilitated by silica particles to compensate for the adverse impact from protein impurities. CrystEngComm, 2021, 23, 8386-8391.	1.3	5
22	Spatially arranging interfacial droplets at the oil–solid interface. Soft Matter, 2020, 16, 107-113.	1.2	3
23	High Protein-Loading Silica Template for Heterogeneous Protein Crystallization. Crystal Growth and Design, 2020, 20, 866-873.	1.4	23
24	Surface Energy Mapping of Modified Silica Using IGC Technique at Finite Dilution. ACS Omega, 2020, 5, 10266-10275.	1.6	5
25	Protein crystal occurrence domains in selective protein crystallisation for bio-separation. CrystEngComm, 2020, 22, 4566-4572.	1.3	6
26	Biomass-derived activated carbons for the removal of pharmaceutical mircopollutants from wastewater: A review. Separation and Purification Technology, 2020, 253, 117536.	3.9	147
27	Computational Analysis of the Solidâ€State and Solvation Properties of Carbamazepine in Relation to its Polymorphism. Chemical Engineering and Technology, 2020, 43, 1152-1159.	0.9	4
28	Stable metal–organic frameworks with low water affinity built from methyl-siloxane linkers. Chemical Communications, 2020, 56, 7905-7908.	2.2	7
29	Influence of interparticle structuring on the surface energetics of a binary powder system. International Journal of Pharmaceutics, 2020, 581, 119295.	2.6	7
30	Modified Voronoi Analysis of Spontaneous Formation of Interfacial Droplets on Immersed Oil–Solid Substrates. Langmuir, 2020, 36, 5400-5407.	1.6	1
31	Anything but Conventional Chromatography Approaches in Bioseparation. Biotechnology Journal, 2020, 15, e1900274.	1.8	47
32	Gravity on Crystallization of Lysozyme: Slower or Faster?. Crystal Growth and Design, 2019, 19, 7402-7410.	1.4	6
33	Template-induced nucleation for controlling crystal polymorphism: from molecular mechanisms to applications in pharmaceutical processing. CrystEngComm, 2019, 21, 4122-4135.	1.3	37
34	Solubility determination and modelling of benzamide in organic solvents at temperatures from 283.15†K and 323.15†K, and ternary phase diagrams of benzamide-benzoic acid cocrystals in ethanol at 298.15†K. Journal of Molecular Liquids, 2019, 286, 110885.	2.3	25
35	Optimization of Vapor Diffusion Conditions for Anti-CD20 Crystallization and Scale-Up to Meso Batch. Crystals, 2019, 9, 230.	1.0	16
36	CHARACTERIZATION OF SILICA MODIFIED WITH SILANES BY USING THERMOGRAVIMETRIC ANALYSIS COMBINED WITH INFRARED DETECTION. Rubber Chemistry and Technology, 2019, 92, 237-262.	0.6	14

#	Article	IF	CITATIONS
37	Calcium sulphate crystallisation in the presence of mesoporous silica particles: Experiments and population balance modelling. Chemical Engineering Science, 2019, 202, 238-249.	1.9	7
38	Synergistic Effect of Graphene Oxide and Different Valence of Cations on Promoting Catalase Crystallization. Crystal Growth and Design, 2019, 19, 2838-2844.	1.4	9
39	Enhancement of Lysozyme Crystallization Using DNA as a Polymeric Additive. Crystals, 2019, 9, 186.	1.0	10
40	Investigating the Role of Glass and Quartz Substrates on the Formation of Interfacial Droplets. Journal of Physical Chemistry C, 2019, 123, 1151-1159.	1.5	13
41	Development and Workflow of a Continuous Protein Crystallization Process: A Case of Lysozyme. Crystal Growth and Design, 2019, 19, 983-991.	1.4	33
42	Surface characterization of bio-fillers from typical mollusk shell using computational algorithms. International Journal of Adhesion and Adhesives, 2018, 84, 48-53.	1.4	2
43	Influences of Crystal Anisotropy in Pharmaceutical Process Development. Pharmaceutical Research, 2018, 35, 100.	1.7	44
44	DNA Origami as Seeds for Promoting Protein Crystallization. ACS Applied Materials & DNA Origami as Seeds for Promoting Protein Crystallization. ACS Applied Materials & DNA Origami as Seeds for Promoting Protein Crystallization. ACS Applied Materials & DNA Origami as Seeds for Promoting Protein Crystallization. ACS Applied Materials & DNA Origami as Seeds for Promoting Protein Crystallization. ACS Applied Materials & DNA Origami as Seeds for Promoting Protein Crystallization. ACS Applied Materials & DNA Origami as Seeds for Promoting Protein Crystallization. ACS Applied Materials & DNA Origami as Seeds for Promoting Protein Crystallization. ACS Applied Materials & DNA Origami as Seeds for Promoting Protein Crystallization. ACS Applied Materials & DNA Origami as Seeds for Promoting Protein Crystallization. ACS Applied Materials & DNA Origami as Seeds for Protein Crystallization. ACS Applied Materials & DNA Origami as Seeds for Protein Crystallization. ACS Applied Materials & DNA Origami as Seeds for Protein Crystallization. ACS Applied Materials & DNA Origami as Seeds for Protein Crystallization. ACS Applied Materials & DNA Origami as Seeds for Protein Crystallization. ACS Applied Materials & DNA Origami as Seeds for Protein Crystallization. ACS Applied Materials & DNA Origami as Seeds for Protein Crystallization. ACS Applied Materials & DNA Origami as Seeds for Protein Crystallization. ACS Applied Materials & DNA Origami as Seeds for Protein Crystallization. ACS Applied Materials & DNA Origami as Seeds for Protein Crystallization. ACS Applied Materials & DNA Origami as Seeds for Protein Crystallization. ACS Applied Materials & DNA Origami as Seeds for Protein Crystallization. ACS Applied Materials & DNA Origami as Seeds for Protein Crystallization. ACS Applied Materials & DNA Origami as Seeds for Protein Crystallization. ACS Applied Materials & DNA Origami as Seeds for Protein Crystallization. ACS Applied Materials & DNA Origami as Seeds for Protein Crystallization. ACS Applied Materials & DNA Origami as Seeds f	4.0	23
45	Continuous protein crystallisation platform and process: Case of lysozyme. Chemical Engineering Research and Design, 2018, 136, 529-535.	2.7	27
46	Formation of multi-compartmental drug carriers by hetero-aggregation of polyelectrolyte microgels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 522, 250-259.	2.3	6
47	Surface Chemistry and Humidity in Powder Electrostatics: A Comparative Study between Tribocharging and Corona Discharge. ACS Omega, 2017, 2, 1576-1582.	1.6	35
48	Noncovalent Surface Modification of Cellulose Nanopapers by Adsorption of Polymers from Aprotic Solvents. Langmuir, 2017, 33, 5707-5712.	1.6	43
49	Solids surface characterization using computational algorithms: A case study for talc fillers. Applied Clay Science, 2017, 141, 212-218.	2.6	3
50	Influence of particle properties on powder bulk behaviour and processability. International Journal of Pharmaceutics, 2017, 518, 138-154.	2.6	66
51	Selective crystallisation of carbamazepine polymorphs on surfaces with differing properties. CrystEngComm, 2017, 19, 6573-6578.	1.3	36
52	Comparative study of surface properties determination of colored pearl-oyster-shell-derived filler using inverse gas chromatography method and contact angle measurements. International Journal of Adhesion and Adhesives, 2017, 78, 55-59.	1.4	12
53	Controlling the Accumulation of Water at Oil–Solid Interfaces with Gradient Coating. Journal of Physical Chemistry B, 2017, 121, 6766-6772.	1.2	6
54	The Effect of Polymorphism on Surface Energetics of D-Mannitol Polymorphs. AAPS Journal, 2017, 19, 103-109.	2.2	15

#	Article	IF	Citations
55	Influence of solvent polarity and supersaturation on template-induced nucleation of carbamazepine crystal polymorphs. Journal of Crystal Growth, 2017, 469, 84-90.	0.7	33
56	Crystallisation via novel 3D nanotemplates as a tool for protein purification and bio-separation. Journal of Crystal Growth, 2017, 469, 42-47.	0.7	15
57	A Comparative Study of Production of Glass Microspheres by using Thermal Process. IOP Conference Series: Materials Science and Engineering, 2017, 205, 012022.	0.3	10
58	Influence of sample preparation on IGC measurements: the cases of silanised glass wool and packing structure. RSC Advances, 2017, 7, 12194-12200.	1.7	7
59	Seeding in Crystallisation. NATO Science for Peace and Security Series A: Chemistry and Biology, 2017, , 235-245.	0.5	15
60	Surface free energy and mechanical performance of LDPE/CBF composites containing toxic-metal free filler. International Journal of Adhesion and Adhesives, 2017, 77, 58-62.	1.4	5
61	Determining Surface Energetics of Solid Surfaces. NATO Science for Peace and Security Series A: Chemistry and Biology, 2017, , 133-144.	0.5	1
62	Study on the surface properties of colored talc filler (CTF) and mechanical performance of CTF/acrylonitrile-butadiene-styrene composite. Journal of Alloys and Compounds, 2016, 676, 513-520.	2.8	8
63	Model for Interpreting Surface Crystallization Using Quartz Crystal Microbalance: Theory and Experiments. Analytical Chemistry, 2016, 88, 4886-4893.	3.2	10
64	A novel colored talc filler: Preparation and surface property determination using two distinct methods. Chemometrics and Intelligent Laboratory Systems, 2016, 155, 54-61.	1.8	6
65	Functionalized Mesoporous Silica for the Control of Crystallization Fouling. Industrial & Engineering Chemistry Research, 2016, 55, 11475-11479.	1.8	3
66	Novel Coupling of a Capacitive Probe with a Dynamic Vapor Sorption (DVS) Instrument for the Electrostatic Measurements of Powders. Industrial & Engineering Chemistry Research, 2016, 55, 5585-5589.	1.8	3
67	A Novel Polyclonal Rabbit Immunoglobulin G Crystallisation Approach Using 3D Nanotemplate. International Journal of Chemical Engineering and Applications (IJCEA), 2016, 7, 369-372.	0.3	0
68	Heterogeneous nucleants for crystallogenesis and bioseparation. Current Opinion in Chemical Engineering, 2015, 8, 69-75.	3.8	36
69	Decoupling the Contribution of Surface Energy and Surface Area on the Cohesion of Pharmaceutical Powders. Pharmaceutical Research, 2015, 32, 248-259.	1.7	25
70	Preparation and characterisation of 3D nanotemplates for protein crystallisation. Powder Technology, 2015, 282, 10-18.	2.1	11
71	Stability study of tubular DNA origami in the presence of protein crystallisation buffer. RSC Advances, 2015, 5, 58734-58737.	1.7	30
72	Establishing template-induced polymorphic domains for API crystallisation: the case of carbamazepine. CrystEngComm, 2015, 17, 6384-6392.	1.3	33

#	Article	IF	CITATIONS
73	Measuring the sticking of mefenamic acid powders on stainless steel surface. International Journal of Pharmaceutics, 2015, 496, 407-413.	2.6	19
74	Effect of milling temperatures on surface area, surface energy and cohesion of pharmaceutical powders. International Journal of Pharmaceutics, 2015, 495, 234-240.	2.6	42
75	A simple method for preparing super-hydrophobic powder from paper sludge ash. Materials Letters, 2015, 142, 80-83.	1.3	46
76	pH-triggered phase inversion and separation of hydrophobised bacterial cellulose stabilised Pickering emulsions. Reactive and Functional Polymers, 2014, 85, 208-213.	2.0	22
77	Investigation of drug–polymer interaction in solid dispersions by vapour sorption methods. International Journal of Pharmaceutics, 2014, 469, 159-167.	2.6	46
78	Phase Behavior of Medium and High Internal Phase Water-in-Oil Emulsions Stabilized Solely by Hydrophobized Bacterial Cellulose Nanofibrils. Langmuir, 2014, 30, 452-460.	1.6	95
79	Template-induced polymorphic selectivity: the effects of surface chemistry and solute concentration on carbamazepine crystallisation. CrystEngComm, 2014, 16, 4927-4930.	1.3	40
80	A New Method To Determine Dispersive Surface Energy Site Distributions by Inverse Gas Chromatography. Langmuir, 2014, 30, 8029-8035.	1.6	29
81	Decoupling the contribution of dispersive and acid-base components of surface energy on the cohesion of pharmaceutical powders. International Journal of Pharmaceutics, 2014, 475, 592-596.	2.6	19
82	Effect of crystal habits on the surface energy and cohesion of crystalline powders. International Journal of Pharmaceutics, 2014, 472, 140-147.	2.6	50
83	A brief review of methods for terminal functionalization of DNA. Methods, 2014, 67, 116-122.	1.9	27
84	High speed imaging with electrostatic charge monitoring to track powder deagglomeration upon impact. Journal of Aerosol Science, 2013, 65, 77-87.	1.8	12
85	Dilatometry of powder compacts — Characterizing amorphous-crystalline transformations. Powder Technology, 2013, 236, 12-16.	2.1	4
86	Process-induced phase transformation of carbamazepine dihydrate to its polymorphic anhydrates. Powder Technology, 2013, 236, 114-121.	2.1	25
87	Nucleation of Elusive Crystal Polymorphs at the Solution–Substrate Contact Line. Crystal Growth and Design, 2013, 13, 1180-1186.	1.4	30
88	Crystallisation of the orthorhombic form of acetaminophen: Combined effect of surface topography and chemistry. Powder Technology, 2013, 236, 24-29.	2.1	15
89	Visualizing powder de-agglomeration upon impact with simultaneous flowing charge behaviour. , 2013, , .		0
90	A Review of Inverse Gas Chromatography and its Development as a Tool to Characterize Anisotropic Surface Properties of Pharmaceutical Solids. KONA Powder and Particle Journal, 2013, 30, 164-180.	0.9	81

#	Article	IF	Citations
91	Effect of Milling on Particle Shape and Surface Energy Heterogeneity of Needle-Shaped Crystals. Pharmaceutical Research, 2012, 29, 2806-2816.	1.7	94
92	Comparative Study of the Triboelectric Charging Behavior of Powders Using a Nonintrusive Approach. Industrial & Description of Powders Using a Nonintrusive Approach.	1.8	10
93	Effect of surface chemistry of novel templates on crystallization of proteins. Chemical Engineering Science, 2012, 77, 201-206.	1.9	33
94	Crystallization of Proteins at Ultralow Supersaturations Using Novel Three-Dimensional Nanotemplates. Crystal Growth and Design, 2012, 12, 1772-1777.	1.4	32
95	Selective Crystallization of Proteins Using Engineered Nanonucleants. Crystal Growth and Design, 2012, 12, 1362-1369.	1.4	51
96	Pharmaceutical nanocrystals. Current Opinion in Chemical Engineering, 2012, 1, 102-107.	3.8	42
97	Computing the Surface Energy Distributions of Heterogeneous Crystalline Powders. Journal of Adhesion Science and Technology, 2011, 25, 339-355.	1.4	25
98	Nucleation and Crystallization of Lysozyme: Role of Substrate Surface Chemistry and Topography. Journal of Adhesion Science and Technology, 2011, 25, 357-366.	1.4	20
99	Role of Surface Chemistry and Energetics in High Shear Wet Granulation. Industrial & Engineering Chemistry Research, 2011, 50, 9642-9649.	1.8	34
100	Effects of Oscillatory Flow on the Nucleation and Crystallization of Insulin. Crystal Growth and Design, 2011, 11, 4353-4359.	1.4	42
101	Novel parallel plate condenser for single particle electrostatic force measurements in atomic force microscope. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 385, 206-212.	2.3	12
102	Determination of surface heterogeneity of d-mannitol by sessile drop contact angle and finite concentration inverse gas chromatography. International Journal of Pharmaceutics, 2010, 387, 79-86.	2.6	68
103	Influence of fines on the surface energy heterogeneity of lactose for pulmonary drug delivery. International Journal of Pharmaceutics, 2010, 388, 88-94.	2.6	33
104	Synthesis and characterization of novel pH-, ionic strength and temperature- sensitive hydrogel for insulin delivery. Polymer, 2010, 51, 1687-1693.	1.8	134
105	Dehydration Kinetics of Pharmaceutical Hydrate: Effects of Environmental Conditions and Crystal Forms. Drying Technology, 2010, 28, 1164-1169.	1.7	15
106	Protein Crystallization by Forced Flow through Glass Capillaries: Enhanced Lysozyme Crystal Growth. Crystal Growth and Design, 2010, 10, 1074-1083.	1.4	31
107	Spontaneous Formation of Water Droplets at Oilâ^'Solid Interfaces. Langmuir, 2010, 26, 13797-13804.	1.6	28
108	Agglomeration Effects on the Drying and Dehydration Stability of Pharmaceutical Acicular Hydrate: Carbamazepine Dihydrate. Industrial & Engineering Chemistry Research, 2010, 49, 422-427.	1.8	12

#	Article	IF	CITATIONS
109	Crystal Habits and the Variation in Surface Energy Heterogeneity. Crystal Growth and Design, 2009, 9, 4907-4911.	1.4	40
110	Inverse Gas Chromatographic Method for Measuring the Dispersive Surface Energy Distribution for Particulates. Langmuir, 2008, 24, 9551-9557.	1.6	90
111	Surface Modification of Natural Fibers Using Bacteria: Depositing Bacterial Cellulose onto Natural Fibers To Create Hierarchical Fiber Reinforced Nanocomposites. Biomacromolecules, 2008, 9, 1643-1651.	2.6	226
112	Wetting Behavior of Ibuprofen Racemate Surfaces. Journal of Adhesion, 2008, 84, 483-501.	1.8	11
113	Methods to determine surface energies of natural fibres: a review. Composite Interfaces, 2007, 14, 581-604.	1.3	71
114	Determination of the Surface Energy Distributions of Different Processed Lactose. Drug Development and Industrial Pharmacy, 2007, 33, 1240-1253.	0.9	79
115	Anisotropic Surface Chemistry of Aspirin Crystals. Journal of Pharmaceutical Sciences, 2007, 96, 2134-2144.	1.6	58
116	Anisotropic Surface Energetics and Wettability of Macroscopic Form I Paracetamol Crystals. Langmuir, 2006, 22, 2760-2769.	1.6	93
117	Wettability of Paracetamol Polymorphic Forms I and II. Langmuir, 2006, 22, 6905-6909.	1.6	42
118	Anisotropic surface chemistry of crystalline pharmaceutical solids. AAPS PharmSciTech, 2006, 7, E12-E20.	1.5	49
119	The Effects of Milling on the Surface Properties of Form I Paracetamol Crystals. Pharmaceutical Research, 2006, 23, 1918-1927.	1.7	112
120	Production of Cenospheres from Coal Fly Ash through Vertical Thermal Flame (VTF) Process. Materials Science Forum, 0, 880, 7-10.	0.3	7