V Matichenkov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8454329/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of silicon on growth processes and adaptive potential of barley plants under optimal soil watering and flooding. Plant Growth Regulation, 2012, 67, 35-43.	3.4	48
2	Effect of silicon fertilizers on cadmium in rice (Oryza sativa) tissue at tillering stage. Environmental Science and Pollution Research, 2017, 24, 10740-10748.	5.3	41
3	Monosilicic acid potential in phytoremediation of the contaminated areas. Chemosphere, 2016, 157, 132-136.	8.2	35
4	The influence of Si-rich mineral zeolite on the growth processes and adaptive potential of barley plants under cadmium stress. Plant Growth Regulation, 2015, 75, 557-565.	3.4	34
5	Mobile forms of silicon in plants. Doklady Biological Sciences, 2008, 418, 39-40.	0.6	20
6	Effect of silicon on barley growth and N2O emission under flooding. Science of the Total Environment, 2019, 685, 1-9.	8.0	17
7	Reduction in nutrient leaching from sandy soils by Si-rich materials: Laboratory, greenhouse and filed studies. Soil and Tillage Research, 2020, 196, 104450.	5.6	17
8	Effect of Si soil amendments on As, Cd, and Pb bioavailability in contaminated paddy soils. Paddy and Water Environment, 2018, 16, 173-181.	1.8	15
9	Minimizing phosphorus release from newly flooded organic soils amended with calcium silicate slag: a pilot study. Wetlands Ecology and Management, 2007, 15, 385-390.	1.5	13
10	Si in Horticultural Industry. , 2004, , 217-228.		11
11	As and Cd Sorption on Selected Si-Rich Substances. Water, Air, and Soil Pollution, 2017, 228, 1.	2.4	11
12	Regulation of As and Cd accumulation in rice by simultaneous application of lime or gypsum with Si-rich materials. Environmental Science and Pollution Research, 2021, 28, 7271-7280.	5.3	11
13	Reduction of Cd, Cu, Ni, and Pb Mobility by Active Si in a Laboratory Study. Mine Water and the Environment, 2016, 35, 302-309.	2.0	10
14	Effect of Si-rich substances on phosphorous adsorption by sandy soils. Environmental Science and Pollution Research, 2017, 24, 24311-24317.	5.3	10
15	Effect of Monosilicic and Polysilicic Acids on Cd Transport in Rice, a Laboratory Test. Journal of Plant Growth Regulation, 2022, 41, 818-829.	5.1	10
16	Cadmium phytoextraction from contaminated paddy soil as influenced by EDTA and Si fertilizer. Environmental Science and Pollution Research, 2019, 26, 23638-23644.	5.3	7
17	Efficacy of Si fertilization to modulate the heavy metals absorption by barley (Hordeum vulgare L.) and pea (Pisum sativum L.). Environmental Science and Pollution Research, 2016, 23, 20402-20407.	5.3	5
18	Microwave Digestion for Colorimetric Determination of Total Si in Plant and Mineral Samples. Communications in Soil Science and Plant Analysis, 2018, 49, 840-847.	1.4	5

V ΜΑΤΙCΗΕΝΚΟV

#	Article	IF	CITATIONS
19	Prospective for remediation and purification of wastes from Xikuangshan mine by using Si-based substances. Journal of Environmental Management, 2016, 172, 77-81.	7.8	4
20	Si-based technologies for reduction of the pollutant leaching from landfills and mine tails. Environmental Technology (United Kingdom), 2017, 38, 1606-1609.	2.2	2
21	Prospect for Treating Antimony-Laden Mine Wastewater Using Local Materials. Mine Water and the Environment, 2017, 36, 379-385.	2.0	2
22	Effect of Amorphous Silicon Dioxide on Cadmium Behavior in the Soil–Rice Plant System. Moscow University Soil Science Bulletin, 2018, 73, 34-38.	0.7	2
23	Detoxification of organic sludge from water-treatment plants by active forms of Ca and Si. , 2019, , 295-322.		2
24	Growth of Bacillus amyloliquefaciens as influence by Si nutrition. Archives of Microbiology, 2021, 203, 4329-4336.	2.2	2
25	Co-treatment with silicon and quicklime in pig manure application as a promising option of environmnetal management. Journal of Environmental Management, 2022, 309, 114684.	7.8	2
26	Utilization of Sludge as Manure. , 2016, , 213-220.		1
27	Effect of Si on As Speciation and Distribution in Rice near the Shimen Realgar Mine. Mine Water and the Environment, 2019, 38, 808-816.	2.0	1
28	Effect of Moisture Deficiency and Increased Salt Content on Silicon State of Some Soils of European Part of Russia and Central China. Moscow University Soil Science Bulletin, 2018, 73, 107-112.	0.7	0
29	Using Si-rich materials for increasing fodder grass quality and quantity. IOP Conference Series: Earth and Environmental Science, 2021, 663, 012062.	0.3	0
30	Microbial Growth in Shrimp Ponds as Influenced by Monosilicic and Polysilicic Acids. Silicon, 2022, 14, 8887-8894.	3.3	0
31	Silicon substances for restoration of oil-contaminated areas. IOP Conference Series: Earth and Environmental Science, 2021, 931, 012015.	0.3	0